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Foreword 
 
This book is written with a dual purpose in mind. Firstly, it aims to guide the students in 
the experiments of the elementary physics courses. Secondly, it incorporates the 
worksheets that the students use during their 2-hour laboratory session. 
 
There are six books to accompany the six elementary physics courses taught at Bogazici 
University. After renovating our laboratories, replacing most of the equipment, and 
finally removing the 110-V electrical distribution in the laboratories, it has become 
necessary to prepare these books. Each book starts with the basic methods for data taking 
and analysis. These methods include brief descriptions for some of the instruments used 
in the experiments and the graphical method for fitting the data to a straight line. In the 
second part of the book, the specific experiments performed in a specific course are 
explained in detail. The objective of the experiment, a brief theoretical background, 
apparatus and the procedure for the experiment are given in this part. The worksheets 
designed to guide the students during the data taking and analysis follows this material 
for each experiment. Students are expected to perform their experiment and data analysis 
during the allotted time and then hand in the completed worksheet to the instructor by 
tearing it out of the book.  
 
 
We would like to thank the members of the department that made helpful suggestions 
and supported this project, especially Arsin Arşık and Işın Akyüz who taught these 
laboratory classes for years. Our teaching assistants and student assistants were very 
helpful in applying the procedures and developing the worksheets. Of course, the smooth 
operation of the laboratories and the continuous well being of the equipment would not 
be possible without the help of our technicians, Erdal Özdemir and Hüseyin Yamak, who 
took over the job from Okan Ertuna. 
 
Erhan Gülmez & Zuhal Kaplan 
İstanbul, September 2007. 
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Part I. BASIC METHODS 
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Introduction 

Physics is an experimental science. Physicists try to understand how nature works by 

making observations, proposing theoretical models and then testing these models through 

experiments. For example, when you drop an object from the top of a building, you 

observe that it starts with zero speed and hits the ground with some speed. From this 

simple observation you may deduce that the speed or the velocity of the object starts from 

zero and then increases, suggesting a nonzero acceleration.  

Usually when we propose a new model we start with the simplest explanation. Assuming 

that the acceleration of the falling object is constant, we can derive a relationship between 

the time it takes to reach the ground and the height of the building. Then measuring these 

quantities many times we try to see whether the proposed relationship is valid. The next 

question would be to find an explanation for the cause of this motion, namely the 

Newton’s Law. When Newton proposed his law, he derived it from his observations. 

Similarly, Kepler’s laws are also derived from observations. By combining his laws of 

motion with Kepler’s laws, Newton was able to propose the gravitational law of 

attraction. As you see, it all starts with measuring lengths, speeds, etc. You should 

understand your instruments very well and carry out the measurements properly. 

Measuring things correctly is absolutely essential for the success of your experiment.  

Every time a new model or law is proposed, you can make some predictions about the 

outcome of new and untried experiments. You can test the proposed models by 

comparing the results of these actual experiments with the predictions. If the results 

disagree with the predictions, then the proposed model is discarded or modified. 

However, an agreement between the experimental results and the predictions is not 

sufficient for the acceptance of the specific model. Models are tested continuously to 

make sure that they are valid. Galilean relativity is modified and turned into the special 

relativity when we started measuring speeds in the order of the speed of light. Sometimes 

the modifications may occur before the tests are done. Of course, all physical laws are 

based on experimental studies. Experimental results always take precedence over theory. 

Obviously, experiments have to be done carefully and objectively without any bias. 

Uncertainties and any contributing systematic effects should be studied carefully. 
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This book is written for the laboratory part of the Introductory Physics courses taken by 

freshman and sophomore classes at Bogazici University. The first part of the book gives 

you basic information about statistics and data analysis. A brief theoretical background 

and a procedure for each experiment are given in the second part.   

Experiments are designed to give students an understanding of experimental physics 

regardless of their major study areas, and also to complement the theoretical part of the 

course. They will introduce you to the experimental methods in physics. By doing these 

experiments, you will also be seeing the application of some of the physics laws you will 

be learning in the accompanying course.  

You will learn how to use some basic instruments and interpret the results, to take and 

analyze data objectively, and to report their results. You will gain experience in data 

taking and improve your insight into the physics problems. You will be performing the 

experiments by following the procedures outlined for each experiment, which will help 

you gain confidence in experimental work. Even though the experiments are designed to 

be simple, you may have some errors due to systematical effects and so your results may 

be different from what you would expect theoretically. You will see that there is a 

difference between real-life physics and the models you are learning in class.  

You are required to use the worksheets to report your results. You should include all your 

calculations and measurements to show that you have completed the experiment fully 

and carried out the required analysis yourself.  
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DATA TAKING AND ANALYSIS 

Dimensions and Units 

A physical quantity has one type of dimension but it may have many units. The 

dimension of a quantity defines its characteristic. For example, when we say that a 

quantity has the dimension of length (L), we immediately know that it is a distance 

between two points and measured in terms of units like meter, foot, etc. This may sound 

too obvious to talk about, but dimensional analysis will help you find out if there is a 

mistake in your derivations. Both sides of an equation must have the same dimension. If 

this is not the case, you may have made an error and you must go back and recheck your 

calculations. Another use of a dimensional analysis is to determine the form of the 

empirical equations. For example, if you are trying to determine the relationship between 

the distance traveled under constant acceleration and the time involved empirically, then 

you should write the equation as 

 

where k is a dimensionless quantity and a is the acceleration. Then, rewriting this 

expression in terms of the corresponding dimensions: 

 

will give us the exponent n as 2 right away. You will be asked to perform dimensional 

analysis in most of the experiments to help you familiarize with this important part of the 

experimental work. 

Measurement and Instruments 

To be a successful experimenter, one has to work in a highly disciplined way. The 

equipment used in the experiment should be treated properly, since the quality of the data 

you will obtain will depend on the condition of the equipment used. Also, the equipment 

has a certain cost and it may be used in the next experiment. Mistreating the equipment 

may have negative effects on the result of the experiment, too.  

nkatd =

( ) nTLTL 2-=
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In addition to following the procedure for the experiment correctly and patiently, an 

experimenter should be aware of the dangers in the experiment and pay attention to the 

warnings. In some cases, eating and drinking in the laboratory may have harmful effects 

on you because food might be contaminated by the hazardous materials involved in the 

experiment, such as radioactive materials. Spilled food and drink may also cause 

malfunctions in the equipment or systematic effects in the measurements.  

Measurement is a process in which one tries to determine the amount of a specific 

quantity in terms of a pre-calibrated unit amount. This comparison is made with the help 

of an instrument. In a measurement process only the interval where the real value exists 

can be determined. Smaller interval means better precision of the instrument. The 

smallest fraction of the pre-calibrated unit amount determines the precision of the 

instrument. 

You should have a very good knowledge of the instruments you will be using in your 

measurements to achieve the best possible results from your work. Here we will explain 

how to use some of the basic instruments you will come across in this course. 

Reading analog scales: 

You will be using several different types of scales. Examples of these different types of 

scales are rulers, vernier calipers, micrometers, and instruments with pointers.  

The simplest scale is the meter stick where you can measure lengths to a millimeter. The 

precision of a ruler is usually the smallest of its divisions. 

 

Figure 1. Length measurement by a ruler 

In Figure 1, the lengths of object A and B are observed to be around 26 cm. Since we use 

a ruler with millimeter division the measurement result for the object A should be given 

as 26.0 cm and B as 26.2 cm. If you report a value more precise than a millimeter when 

0 1 2 24 25 26 27 28 

A 

B 
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you use a ruler with millimeter division, obviously you are guessing the additional 

decimal points. 

Vernier Calipers (Figure 2) are instruments designed to extend the precision of a simple 

ruler by one decimal point. When you place an object between the jaws, you may obtain 

an accurate value by combining readings from the main ruler and the scale on the frame 

attached to the movable jaw. First, you record the value from the main ruler where the 

zero line on the frame points to. Then, you look for the lines on the frame and the main 

ruler that looks like the same line continuing in both scales. The number corresponding 

to this line on the frame gives you the next digit in the measurement. In Figure 2, the 

measurement is read as 1.23 cm. The precision of a vernier calipers is the smallest of its 

divisions, 0.1 mm in this case. 

     

Figure  2. Vernier Calipers. 

Micrometer (Figure 3) is similar to the vernier calipers, but it provides an even higher 

precision. Instead of a movable frame with the next decimal division, the micrometer has 

a cylindrical scale usually divided into a hundred divisions and moves along the main 

ruler like a screw by turning the handle. Again the coarse value is obtained from the main 

ruler and the more precise part of the measurement comes from the scale around the rim 

of the cylindrical part. Because of its higher precision, it is used mostly to measure the 

thickness of wires and similar things. In Figure 3, the measurement is read as 1.187 cm. 

The precision of a micrometer is the smallest of its divisions, 0.01 mm in this case.  

Here is an example for the measurement of the radius of a disk where a ruler, a vernier 

calipers, and a micrometer are used, respectively: 

  

0 

R=1.2? cm 

4 3 2 

?=3 
R=1.23cm 

1 
0 5 10 
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Measurement Precision Instrument 

  1 mm  Ruler 

  0.1 mm Vernier calipers 

  0.01 mm Micrometer 

 

 

Figure 3. Micrometer. 

Spherometer (Figure 4) is an instrument to determine very small thicknesses and the 

radius of curvature of a surface. First you should place the spherometer on a level surface 

to get a calibration reading (CR). You turn the knob at the top until all four legs touch 

the surface. When the middle leg also touches the surface, the knob will first seem to be 

free and then tight. The reading at this position will be the calibration reading (CR). Then 

you should place the spherometer on the curved surface and turn the knob until all four 

legs again touch the surface. The reading at this position will be the measurement reading 

(MR). You will read the value from the vertical scale first and then the value on the dial 

will give you the fraction of a millimeter. Then you can calculate the radius of curvature 

of the surface as: 

 

where D = |CR-MR| and A is the distance between the outside legs. 

( )mmR 123 ±=

( )mmR 1.01.23 ±=

( )mmR 01.014.23 ±=

D
ADR
62

2

+=

R=1.187 cm 

1 0 
80 

90 
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Figure 4. Spherometer. 

Instruments with pointers usually have a scale along the path that the pointer moves. 

Mostly the scales are curved since the pointers move in a circular arc. To avoid the 

systematic errors introduced by the viewing angle, one should always read the value from 

the scale where the pointer is projected perpendicularly. You should not read the value 

by looking at the pointer and the scale sideways or at different angles. You should always 

look at the scale and the pointer perpendicularly. Usually in most instruments there is a 

mirror attached to the scale to make sure the readings are done similarly every time when 

you take a measurement (Figure 5). When you bring the scale and its image on the mirror 

on top of each other, you will be looking at the pointer and the scale perpendicularly. 

Then you can record the value that the pointer shows on the scale. Whenever you measure 

something by such an instrument, you should follow the same procedure. 

 

Figure 5. A voltmeter with a mirror scale. 
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Data Logger 

In some experiments we will be using sensors to measure some quantities like position, 

angle, angular velocity, temperature, etc. The output of these sensors will be converted 

into numbers with the help of a data acquisition instrument called DATA LOGGER 

(Figure 6).  

Data Logger is a versatile instrument that takes data using changeable sensors. When you 

plug a sensor to its receptacle at the top, it recognizes the type of the sensor. When you 

turn the data logger on with a sensor attached, it will start displaying the default mode 

for that sensor. Data taking with the data logger is very simple. You can start data taking 

by pressing the Start/Stop button (7). You may change the display mode by pressing the 

button on the right with three rectangles (6). To change the default measurement mode, 

you should press the plus or minus buttons (3 or 4). If there is more than one type of 

quantity because of the specific sensor you are using, you may select the type by pressing 

the button with a check mark (5) to turn on the editing mode and then selecting the desired 

type by using the plus and minus buttons (3 or 4). You will exit from the editing mode 

by pressing the button with the check mark (5) again. You may edit any of the default 

settings by using the editing and plus-minus buttons. For a more detailed operation of the 

instrument you should consult your instructor.  
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Figure 6. Data Logger. 
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Basics of Statistics and Data Analysis 

Here, you will have an introduction to statistical methods, such as distributions and 

averages.  

All the measurements are done for the purpose of obtaining the value for a specific 

quantity. However, the value by itself is not enough. Determining the value is half the 

experiment. The other half is determining the uncertainty. Sometimes, the whole purpose 

of an experiment may be to determine the uncertainty in the results.  

Error and uncertainty are synonymous in experimental physics even though they are two 

different concepts. Error is the deviation from the true value. Uncertainty, on the other 

hand, defines an interval where the true value is. Since we do not know the true value, 

when we say error we actually mean uncertainty. Sometimes the accepted value for a 

quantity after many experiments is assumed to be the true value. 

Sample and parent population 

When you carry out an experiment, usually you take data in a finite number of trials. This 

is our sample population. Imagine that you have infinite amount of time, money, and 

effort available for the experiment. You repeat the measurement infinite times and obtain 

a data set that has all possible outcomes of the experiment. This special sample 

population is called parent population since all possible sample populations can be 

derived from this infinite set. In principle, experiments are carried out to obtain a very 

good representation of the parent population, since the parameters that we are trying to 

measure are those that belong to the parent population. However, since we can only get 

an approximation for the parent population, values determined from the sample 

populations are the best estimates.  

Mean and Standard deviation 

Measuring a quantity usually involves statistical fluctuations around some value. 

Multiple measurements included in a sample population may have different values. 

Usually, taking an average cancels the statistical fluctuations to first degree. Hence, the 

average value or the mean value of a quantity in a sample population is a good estimate 

for that quantity. 
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Even though the average value obtained from the sample population is the best estimate, 

it is still an estimate for the true value. We should have another parameter that tells us 

how close we are to the true value. The variance of the sample: 

 

gives an idea about how scattered the data are around the mean value. Variance is in fact 

a measure of the average deviation from the mean value. Since there might be negative 

and positive deviations, squares of the deviations are averaged to avoid a null result. 

Because the variance is the average of the squares, square root of variance is a better 

quantity that shows the scatter around the mean value. The square root of the variance is 

called standard deviation: 

 

However, the standard deviation calculated this way is just the standard deviation of the 

sample population. What we need is the standard deviation of the parent population. The 

best estimate for the standard deviation of the parent population can be shown to be: 

 

As the number of measurements, N, becomes large or as the sample population 

approaches parent population, standard deviation of the sample is almost equal to the 

standard deviation of the parent population.  

Distributions 

The probability of obtaining a specific value can be determined by dividing the number 

of measurements with that value to the total number of measurements in a sample 

population. Obviously, the probabilities obtained from the parent population are the best 
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estimates. Total probability should be equal to 1 and probabilities should be larger as one 

gets closer to the mean value. The set of probability values associated with a population 

is called the probability distribution for that measurement. Probability distributions can 

be experimental distributions obtained from a measurement or mathematical functions. 

In physics, the most frequently used mathematical distributions are Binomial, Poisson, 

Gaussian, and Lorentzian. Gaussian and Poisson distributions are in fact special cases of 

Binomial distribution. However, in most cases, Gaussian distribution is a good 

approximation. In fact, all distributions approach Gaussian distribution at the limit 

(Central Limit Theorem).  

Errors 

The result of an experiment done for the first time almost always turns out to be wrong 

because you are not familiar with the setup and may have systematic effects. However, 

as you continue to take data, you will gain experience in the experiment and learn how 

to reduce the systematical effects. In addition to that, increasing number of measurements 

will result in a better estimate for the mean value of the parent population. 

Errors in measurements: Statistical and Systematical errors 

As mentioned above, error is the deviation between the measured value and the true 

value. Since we do not know the true value, we cannot determine the error in this sense. 

On the other hand, uncertainty in our measurement can tell us how close we are to the 

true value. Assuming that the probability distribution for our measurement is a Gaussian 

distribution, 68% of all possible measurements can be found within one standard 

deviation of the mean value. Since most physical distributions can be approximated by a 

Gaussian, defining the standard deviation as our uncertainty for that measurement will 

be a reasonable estimate. In some cases, two-standard deviation or two-sigma interval is 

taken as the uncertainty. However, for our purposes using the standard deviation as the 

uncertainty would be more than enough. Also, from now on, whenever we use error, we 

will actually mean uncertainty. 

Errors or uncertainties can be classified into two major groups; statistical and 

systematical. 
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Statistical Errors   

Statistical errors or random errors are caused by statistical fluctuations in the 

measurements. Even though some unknown phenomenon might be causing these 

fluctuations, they are mostly random in nature. If the size of the sample population is 

large enough, then there is equal number of measurements on each side of the mean at 

about similar distances. Therefore, averaging over such a large number of measurements 

will smooth the data and cancel the effect of these fluctuations. In fact, as the number of 

measurements increases, the effect of the random fluctuations on the average will 

diminish. Taking as much data as possible improves statistical uncertainty. 

Systematical Errors 

On the other hand, systematical errors are not caused by random fluctuations. One could 

not reduce systematical errors by taking more data. Systematical errors are caused by 

various reasons, such as, the miscalibration of the instruments, the incorrect application 

of the procedure, additional unknown physical effects, or anything that affects the 

quantity we are measuring. Systematic errors caused by the problems in the measuring 

instruments are also called instrumental errors. Systematical errors are reduced or 

avoided by finding and removing the cause.  

Example 1: You are trying to measure the length of a pipe. The meter stick you are going 

to use for this purpose is constructed in such a way that it is missing a millimeter from 

the beginning. Since both ends of the meter stick are covered by a piece of metal, you do 

not see that your meter stick is 1 mm short at the beginning. Every time you use this 

meter stick, your measurement is actually 1 mm longer than it should be. This will be the 

case if you repeat the measurement a few times or a few million times. This is a 

systematical error and, since it is caused by a problem in the instrument used, it is 

considered an instrumental error. Once you know the cause, that is, the shortness of your 

meter stick, you can either repeat your measurement with a proper meter stick or add 1 

mm to every single measurement you have done with that particular meter stick.  

Example 2: You might be measuring electrical current with an ammeter that shows a 

nonzero value even when it is not connected to the circuit. In a moving coil instrument 

this is possible if the zero adjustment of the pointer is not done well and the pointer 
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always shows a specific value when there is no current. The error caused by this is also 

an instrumental error.  

Example 3: At CERN, the European Research Center for Nuclear and Particle Physics, 

there is a 28 km long circular tunnel underground. This tunnel was dug about 100 m 

below the surface. It was very important to point the direction of the digging underground 

with very high precision. If there were an error, instead of getting a complete circle, one 

would get a tunnel that is not coming back to the starting point exactly. One of the inputs 

for the topographical measurements was the direction towards the center of the earth. 

This could be determined in principle with a plumb bob (or a piece of metal hung on a 

string) pointing downwards under the influence of gravity. However, when there is a 

mountain range on one side and a flat terrain on the other side (like the location of the 

CERN accelerator ring), the direction given by the plumb bob will be slightly off towards 

the mountainous side. This is a systematic effect in the measurement and since its 

existence is known, the result can be corrected for this effect.  

Once the existence and the cause of a systematic effect are known, it is possible to either 

change the procedure to avoid it or correct it. However, we may not always be fortunate 

enough to know if there is a systematic effect in our measurements. Sometimes, there 

might be unknown factors that affect our experiment. The repetition of the measurement 

under different conditions, at different locations, and with totally different procedures is 

the only way to remove the unknown systematic effects. In fact, this is one of the 

fundamentals of the scientific method. 

We should also mention the accuracy and precision of a measurement. The meaning of 

the word “accuracy” is closeness to the true value. As for “precision,” it means a 

measurement with higher resolution (more significant figures or digits). An instrument 

may be accurate but not precise or vice versa. For example, a meter stick with millimeter 

divisions may show the correct value. On the other hand, a meter stick with 0.1 mm 

division may not show the correct value if it is missing a one-millimeter piece from the 

beginning of the scale. However, if an instrument is precise, it is usually an expensive 

and well designed instrument and we expect it to be accurate. 
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Reporting Errors: Significant figures and error values 

As mentioned above, determining the error in an experiment requires almost the same 

amount of work as determining the value. Sometimes, almost all the effort goes into 

determining the uncertainty in a measurement.  

Using significant figures is a crude but an effective way of reporting the errors. A simple 

definition for significant figures is the number of digits that one can get from a measuring 

instrument (but not a calculator!). For example, a digital voltmeter with a four-digit 

display can only provide voltage values with four digits. All these four digits are 

significant unless otherwise noted. On the other hand, reporting a six digit value when 

using an analog voltmeter whose smallest division corresponds to a four-digit reading 

would be wrong. One could try to estimate the reading to the fraction of the smallest 

division, but then this estimate would have a large uncertainty.  

Significant figures are defined as following: 

• Leftmost nonzero digit is the most significant figure. 

Examples: 0.00006520 m 

 1234 m 

 41.02 m 

 126.1 m 

 4120 m 

 12000 m 

• Rightmost nonzero digit is the least significant figure if there is no decimal point. 

Examples:  1234 m 

 4120 m 

 12000 m 

• If there is a decimal point, rightmost digit is the least significant figure even if it is 

zero. 

Examples: 0.00006520 m 

 41.02 m 

 126.1 m 

Then, the number of significant figures is the number of digits between the most and the 

least significant figures including them.  
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Examples: 0.00006520 m 4 significant figures 

 1234 m 4 sf 

 41.02 m 4 sf 

 126.1 m 4 sf 

 4120 m 3 sf 

 12000 m 2 sf 

 1.2000 x 104 m 5 sf 

Significant figures of the results of simple operations usually depend on the significant 

figures of the numbers entering into the arithmetic operations. Multiplication or division 

of two numbers with different numbers of significant figures should result in a value with 

a number of significant figures similar to the one with the smallest number of significant 

figure. For example, if you multiply a three-significant-figure number with a two-

significant-figure number, the result should be a two-significant-figure number. On the 

other hand, when adding or subtracting two numbers, the outcome should have the same 

number of significant figures as the smallest of the numbers entering into the calculation. 

If the numbers have decimal points, then the result should have the number of significant 

figures equal to the smallest number of digits after the decimal point. For example, if 

three values, two with two significant figures and one with four significant figures after 

the decimal point, are added or subtracted, the result should have two significant figures 

after the decimal point. 

Example: Two different rulers are used to measure the length of a table. First, a ruler 

with 1-m length is used. The smallest division in this ruler is one millimeter. Hence, the 

result from this ruler would be 1.000 m. However, the table is slightly longer than one 

meter. A second ruler is placed after the first one. The second ruler can measure with a 

precision of one tenth of a millimeter.  Let’s assume that it gives a reading of 0.2498 m. 

To find the total length of the table we should add these two values. The result of the 

addition will be 1.2498, but it will not have the correct number of significant figures since 

one has three and the other has four significant figures after the decimal point. The result 

should have three significant figures after the decimal point. We can get the correct value 

by rounding off the number to three significant figures after the decimal point and report 

it as 1.250 m. 
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More Examples for Addition and Subtraction: 

 4 .122 

 3 .74 

 + 0 .011   

 7 .873 = 7.87  (2 digits after the decimal point) 

 

Examples for Multiplication and Division: 

 4.782 x 3.05 = 14.5851 = 14.6  (3 significant figures) 

 3.728 / 1.6781 = 2.22156 = 2.222  (4 significant figures) 

Rounding off 

Sometimes you may have more numbers than the correct number of significant figures. 

This might happen when you divide two numbers and your calculator may give you as 

many digits as it has in its display. Then you should reduce the number of digits to the 

correct number of significant figures by rounding it off. One common mistake is by 

starting from the rightmost digit and repeatedly rounding off until you reach the correct 

number of significant figures. However, all the extra digits above and beyond the number 

of correct significant figures have no significance. Usually you should keep one extra 

digit in your calculations and then round this extra digit at the end. You should just 

discard the extra digits other than the one next to the least significant figure. The 

reasoning behind the rounding off process is to bring the value to the correct number of 

significant figures without adding or subtracting an amount in a statistical sense. To 

achieve this you should follow the procedure outlined below: 

• If the number on the right is less than 5, discard it.  

• If it is more than 5, increase the number on its left by one.  

• If the number is exactly five, then you should look at the number on its left.  

- If the number on its left is even then again discard it.  

- If the number on the left of 5 is odd, then you should increase it by one.  

This special treatment in the case of 5 is because there are four possibilities below and 

above five and adding five to any of them will introduce a bias towards that side. Hence, 

grouping the number on the left into even and odd numbers makes sure that this ninth 

case is divided into exactly two subsets; five even and five odd numbers. We count zero 
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in this case since it is in the significant part. We do not count zero on the right because it 

is not significant.  

Example: Rounding off 2.4456789 to three significant figures by starting from all 

the way to the right, namely starting from the number 9, and repeatedly rounding off until 

three significant figures are left would result in 2.45 but this would be wrong. The correct 

way of doing this is first dropping all the non-significant figures except one and then 

rounding it off, that is, after truncation 2.445 is rounded off to 2.44. 

More Examples: Round off the given numbers to 3 significant figures: 

 43.37468 = 43.37 = 43.4 

 43.34468 = 43.34 = 43.3 

 43.35468 = 43.35 = 43.4 

 43.45568 = 43.45 = 43.4 

If we determine the standard deviation for a specific value, then we can use that as the 

uncertainty since it gives us a better estimate. In this case, we should still pay attention 

to the number of significant figures since reporting extra digits is meaningless. For 

example if you have the average and the standard deviation as 2.567 and 0.1, 

respectively, then it would be appropriate to report your result as 2.6±0.1. 

Weighted Averages 

Sometimes we may measure the same quantity in different sessions. As a result we will 

have different sets of values and uncertainties. By combining all these sets we may 

achieve a better result with a smaller uncertainty. To calculate the overall average and 

standard deviation, we can assign weight to each value with the corresponding variance 

and then calculate the weighted average.  

 

Similarly we can also calculate the overall standard deviation. 
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Error Propagation 

If you are measuring a single quantity in an experiment, you can determine the final value 

by calculating the average and the standard deviation. However, this may not be the case 

in some experiments. You may be measuring more than one quantity and combining all 

these quantities to get another quantity. For example, you may be measuring x and y and 

by combining these to obtain a third quantity z: 

  or  

You could calculate z for every single measurement and find its average and standard 

deviation. However, a better and more efficient way of doing it is to use the average 

values of x and y to calculate the average value of z. In order to determine the variance 

of z, we have to use the square of the differential of z: 

 

Variance would be simply the sum of the squares of both sides over the whole sample 

set divided by the number of data points N (or N-1 for the parent population). Then, the 

general expression for determining the variance of the calculated quantity as a function 

of the measured quantities would be: 

  for k number of measured quantities. 

Applying this expression to specific cases would give us the corresponding error 

propagation rule. Some special cases are listed below: 

  for  
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  for  or  or  

  for  

  for  

  for  

  for  

Multivariable measurements: Fitting procedures 

When you are measuring a single quantity or several quantities and then calculating the 

final quantity using the measured values, all the measurements involve unrelated 

quantities. There are no relationships between them other than the calculated and 

measured quantities. However, in some cases you may have to set one or more quantities 

and measure another quantity determined by the independent variables. This is the case 

when you have a function relating some quantities to each other. For example, the 

simplest function would be the linear relationship: 

 

where a is called the slope and b the y-intercept. Since we are setting the value of the 

independent variable x, we assume its uncertainty to be negligible compared to the 

dependent variable y. Of course, we should be able to determine the uncertainty in y. 

From such an experiment, usually we have to determine the parameters that define the 

function; a and b. This can be done by fitting the data to a straight line. 

The least squares (or maximum likelihood, or chi-square minimization) method would 

provide us with the best possible estimates. However, this method involves lengthy 

calculations and we will not be using it in this course.  
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We will be using a graphical method that will give us the parameters that we are looking 

for. It is not as precise as the least squares method and does not give us the uncertainties 

in the parameters, but it provides answers in a short time that is available to you.  

Graphical method is only good for linear cases. However, there are some exceptions to 

this either by transforming the functions to make them linear or plotting the data on a 

semi-log or log-log or polar graph paper (Figure 7). , , , , are 

some examples for nonlinear functions that can be transformed to linear expressions. 

type expressions can be linearized by substituting  with a simple x: 

 where . Power functions can be linearized by 

taking the logarithm of the function: becomes  and then 

through , , and  transformation it becomes . 

Exponential functions can be transformed similar to the power functions by taking the 

natural logarithm:  becomes  and through  and 

 transformation it becomes .  

Before attempting to obtain the parameters that we are looking for, we have to plot the 

data on a graph paper. As long as we have linearly dependent quantities or transformed 

quantities as explained above, we can use regular graph paper.  

       

Figure 7: Different types of graph papers: linear, semi-log, log-log, and polar. 

You should use as much area of the graph paper as possible when you plot your data. 

Your graph should not be squeezed to a corner with lots of empty space. To do this, first 

you should determine the minimum and maximum values for each variable, x and y, then 

choose a proper scale value. For example, if you have values ranging from 3 to 110 and 

your graph paper is 23 centimeters long, then you should choose a scale factor of 1 cm 

to 5 units of your variable and label your axis from 0 to 115 and marking each big square 

(usually linear graph papers prepared in cm and millimeter divisions) at increasing 

r/1 2/1 r 5axy = bxaey -=

nr/1 nr/1

BxAyrBAy n +=®+= / nrx /1=
naxy = xnay logloglog +=

yy log=¢ aa log=¢ xx log=¢ xnay ¢+¢=¢
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multiples of 5. You should choose the other axis in a similar way. When you select a 

scale factor you should select a factor that is easy to divide by, like 1, 2, 4, 5, 10, etc. 

Usually scale factors like 3, 4.5, 7.9 etc., are bad choices. Both axis may have different 

scale factors and may start from a nonzero value. You should clearly label each axis and 

write down the scale factors. Then you should mark the position corresponding to each 

data pair with a cross or similar symbols. Usually you should also include the 

uncertainties as vertical bars above and below the data point whose lengths are 

determined according to the scale factor. Once you finish marking all your data pairs, 

then you should try to pass a straight line through all the data points. Usually, this may 

not be possible since the data points may not fall into a straight line. However, since you 

know that the relationship is linear there should be a straight line that passes through the 

data points even though not all of them fall on a line. You should make sure that the 

straight line passes through the data points in a balanced way. An equal number of data 

points should be below and above the straight line. Then, by picking two points on the 

line as far apart from each other as possible, you should draw parallel lines to the axes, 

forming a triangle (Figure 8). The slope is the slope of the straight line. You can calculate 

the slope as: 

 

and read the y-intercept from the graph by finding the point where the straight line crosses 

the y-axis. You can estimate the uncertainties of the slope and intercept by finding 

different straight lines that still pass through all the data points in an acceptable manner. 

The minimum and maximum values obtained from these different trials would give us 

an idea about the uncertainties. However, obtaining the parameters will be sufficient in 

this course. 
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Figure 8: Determining the slope and y-intercept. 

Special graph papers, like semi-log and log-log graph papers, are used when you have 

relationships that can be transformed into linear relationships by taking the base-10 

logarithm of both sides. Semi-log graph papers are used if one side of the expression 

contains powers of ten or single exponential function resulting in a linear variable when 

you take the base-10 logarithm of both sides.  

Logarithmic graph papers are used when you prefer to use the measured values directly 

without taking the logarithms and still obtaining a linear graph. Each logarithmic axis is 

divided in such a way that when you use the divisions marked on the paper it will have 

the same effect as if you first took the logarithm and then plotted on a regular graph 

paper. Logarithmic graph papers are divided linearly into decades and in each decade is 

divided logarithmically. There is no zero value in a logarithmic axis. You should plot 

your data by choosing appropriate scale factors for each axis and then mark the data 

points directly without taking the logarithms. You should again draw a straight line that 

will pass through all the data points in a balanced way. The slope of the line would give 

us the exponent in the relationship. For example, a relationship like  would be 

linearized as . If you plot this on a regular graph paper, the slope 

will be given by  where you will read the logarithms 

directly from the graph. On the other hand, when you plot your data on a log-log paper, 

you will be using the measured values directly. When you picked the two points from the 

straight line that fits the data points best, the slope should be calculated by 

naxy =

xnay logloglog +=

( ) ( )1212 loglog/loglog xxyyn --=
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 where you will calculate the logarithms using the 

values read from the graph. y-intercept would be directly the value where the straight line 

crosses the vertical axis at . 

 

Figure 9: Determining the slope and y-intercept. 

slope point 1: ( 2.0 ; 2.6 ) and slope point 2 : (18.0 ; 7.0 ) 

  and  y-intercept = 2.0. 
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Reports 

Obviously, doing an experiment and getting some results are not enough. The results of 

the experiment should be published so that others working on the same problem will 

know your results and use them in their calculations or compare with their results. The 

reports should have all the details so that another experimenter could repeat your 

measurements and get the same results. However, in an introductory teaching lab there 

is no need for such extensive reports since the experiments you will be doing are well 

established and time is limited. You have to include enough details to convince your lab 

instructor that you have performed the experiment appropriately and analyzed it 

correctly. The results of your analysis, including the uncertainties in the measurements, 

should be clearly expressed. The comparisons with the accepted values may also be 

included if possible. 
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Part II: EXPERIMENTS 
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1. ELECTROMAGNETIC OSCILLATIONS IN 
AN RLC CIRCUIT 

OBJECTIVE : To study the oscillations of potential difference across a charged 
capacitor in series with a resistor and an inductor. 

THEORY : In a series RLC circuit, the Kirchoff’s loop rule results in the 
following: 

 

or  

 

since I = dq/dt. This is an equation for a damped oscillator driven by a time dependent 
voltage source or a signal generator. There are three different combinations of R, L, and 
C values where we can get specific solutions to this equation for a square wave signal as 
the applied voltage.  
 
Underdamped: 
If the values satisfy the following conditions, the circuit will be underdamped: 

. 

Then the solution will be: 

 

and the voltage across the capacitor will be: 

, 

where V0 is the voltage when the square wave is at the maximum value and d is the phase. 
w0 is given by: 

. 

Oscillations decay exponentially with a time constant 2L/R. Signals reach their half 
values in: 

 

which we can call half-life of the signals. 
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Critically Damped: 

If , the circuit is critically damped. As you see from the equation for w0 above, 

the frequency of the oscillations is zero which means there is only an exponential decay. 
 
Overdamped: 

If , the circuit is overdamped. The frequency of the oscillations, w0, is an 

imaginary number which means there is only an exponential decay similar to the 
Critically Damped Case. 

APPARATUS : Capacitance and resistance boxes, inductor with an iron block, 
oscillator, oscilloscope. 

PROCEDURE : 
 

 
 
 

• Connect the circuit by using the A-E terminals of the 1000 turn coil for the 
inductor and 0.001µF capacitor, turn on the oscilloscope and make the initial 
adjustments. Internal resistance of the square wave generator and the coil 
resistance will be the total resistance in the circuit. 

• Adjust the square wave frequency and the sweep frequency of the oscilloscope 
so that one complete cycle of decaying oscillations cover the whole screen of the 
oscilloscope. Record the value of the sweep frequency in your report. 

• Choose two peaks at least 5-6 cm far from each other and count the number of 
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the complete cycles in this chosen range l. Determine the length of one complete 
cycle, period, and the frequency of the decaying oscillations. 

• Measure the half-life of the decaying oscillations. 
• Using the half-life equation, calculate the inductance L of the coil in millihenries 

and calculate the frequency of oscillations by using this value. 

 

• When a piece of iron is inserted into a coil, a large change occurs in the inductance 
of the coil. With the iron fully inserted, determine the new value of the 
inductance. 
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ELECTROMAGNETIC OSCILLATIONS IN 
AN RLC CIRCUIT 
 

Name & Surname : Experiment # : 
Section : Date : 
 
 
 

DATA and CALCULATIONS: 
 
Draw the circuit diagram 

 

 
Description / Notation Value & Unit  
 
 
Capacitance C = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 

 

Resistance R = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Frequency of the 
Square Wave fSWG = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Generator 
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Description / Notation Value & Unit 
 
[TIME / DIV] Dial 
of the Oscilloscope 
without Iron Block = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
[TIME / DIV] Dial 
of the Oscilloscope 
with Iron Block = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Length between the 
chosen peaks  l = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Number of complete 
Cycles in l n = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

W I T H O U T  I R O N  B L O C K  I N S I D E  T H E  I N D U C T O R  

 
Description / Symbol Value / Calculations Result 
 (show each step) 

Half-Life t1/2 (cm) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

Half-Life t1/2(sec) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 
Inductance  
of the coil L1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Wavelength l = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
 
Period of  the 
Oscillations T = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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Frequency of the 
Oscillations f measured = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Frequency of the 
Oscillations f calculated = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

% Error for f: 

 

W I T H  I R O N  B L O C K  I N S I D E  T H E  I N D U C T O R  

 
Description / Symbol Value / Calculations Result 
 (show each step) 

Half-Life t1/2 (cm) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Half-Life t1/2(sec) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 
Inductance  
of the coil L2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

Show the Dimensional Analysis of L clearly: 
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QUESTION :  
 

1) What is the reason for the difference you observe when you insert the iron 
block inside the inductor? 
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2. ALTERNATING CURRENTS -SERIES 
CIRCUITS 

OBJECTIVE : To study the alternating current circuits. 
THEORY :  
The alternating current source that we use most commonly is in the form of 

  (1) 

where Vp is the peak voltage and f is the frequency of the power supply. When we connect 
various circuit elements to an alternating current source, we can determine the current 
through the circuit by Ohm’s Law. The current through a resistor, a capacitor, and an 
inductor will be given by: 

  (2a) 

  (2b) 

  (2c) 

Hence the current through a resistor is in phase with the voltage across it; the current 
through a capacitor leads the voltage by 90°; and the current through an inductor lags the 
voltage by 90°. 
 
Because of these differences in the phases, analyzing alternating current circuits 
involving different types of circuit elements is somewhat tricky and not as simple as the 
DC circuits. We can solve this problem by using either complex algebra or the phasor 
method which are similar to each other.  
 
In the complex algebra method we define reactances for each element: 

    (3) 

and treat the voltage and the current as real numbers. Then the circuit analysis for the 
alternating currents turns into a form similar to the DC circuits. Of course, the reactances 
contain all the information relevant to the alternating current circuit, that is, the frequency 
and the phases in the form of the imaginary numbers. Solutions will include both real 
and imaginary parts. As you know, we can also represent the complex numbers as pairs 
of numbers on a Cartesian coordinate system where the horizontal axis corresponds to 
the real and the vertical axis corresponds to the imaginary part. Phasor method simply 
uses the graphical representation of the complex numbers. In this experiment we will be 
using the phasor method. 

)2sin()( ftVtV p p=

)2sin( ft
R
V

I p
R p=

( )
)902sin(2

)2sin( o
p

p
C ftfCV

dt
ftVd

CI +== pp
p

ò -== )902sin(
2

)2sin(1 op
pL ft

fL
V

dtftV
L

I p
p

p

RX R = fCi
X C p2

1
= fLiX L p2=



 

 50 

RC CIRCUIT 
When you connect a capacitor and a resistor in series to an alternating voltage source, 
the phase of the current through the capacitor will be 90° ahead of the voltage. If we were 
to take the current as our reference for the phase, then the voltage across the capacitor 
will be 90° behind the current hence the voltage across the resistor. The total voltage 
across the RC series combination will be equal to the applied voltage: 

  (4) 

RL CIRCUIT 
When you connect an inductor and a resistor in series to an alternating voltage source, 
the current through the inductor will be 90° behind the voltage. If we were to take the 
current as our reference for the phase, then the voltage across the inductor will be 90° 
ahead of the current hence the voltage across the resistor. The total voltage across the RL 
series combination will be equal to the applied voltage: 

  (5) 

However, the inductor also has some internal resistance, RL. Because of its internal 
resistance, the voltage across the inductor will not be exactly 90° ahead but at an angle 
calculated from: 

  (6) 

We should also modify Equation (5) accordingly: 

  (7) 

RLC CIRCUIT 
When you connect an inductor, a capacitor, and a resistor in series to an alternating 
voltage source, the current through the inductor and the capacitor will be 90° behind and 
ahead of the voltage, respectively. If we were to take the current as our reference for the 
phase, then the voltage across the inductor and the capacitor will be 90° ahead of and 
behind the current (hence the voltage across the resistor), respectively. The total voltage 
across the RLC series combination will be equal to the applied voltage: 

  (8) 

 
Because of its internal resistance, RL, the voltage across the inductor will not be exactly 
90° ahead but at an angle calculated from: 

  (9) 

We should also modify Equation (8) accordingly: 
  

( )22
CRapp VVV +=
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fLpq 2tan =
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  (10) 

where the total impedance of the RLC circuit is given by 

  (11) 

Now the phase difference between the current and the voltage is more complex and given 
by: 
 

  (12) 

 
This F angle is the angle between the applied voltage and the resulting current phasors. 
It determines the total average power used in an RLC circuit: 

   (13) 

We should remind that the values measured by instruments like voltmeters, ammeters, 
etc. are root-mean-squared values and not the peak values. You can determine the peak 
values using an oscilloscope. 
 

APPARATUS : Inductor with an iron block inside, resistance box, capacitor, AC 
voltmeter and ammeter, 24-V AC power supply. 
 

PROCEDURE : 

• Use the two fixed ends of the rheostat as a resistor. Use 24 V, 50 Hz output of the 
power supply as your AC source.  

• Construct an RC circuit and measure the voltage across each element. Then draw 
the phasor diagram by taking the current (i.e. the voltage across the resistor) as 
the reference. Then draw two circles with radii equal to VC and Vapp from each 
end of the phasor corresponding to the voltage across the resistor. Phasors for VC 
and Vapp will meet each other at the point where the circles intersect. Determine 
the angle between VC and VR.  

• Repeat the previous step by constructing an RL circuit this time. Determine the 
internal resistance of the inductor by measuring the current through the circuit 
and the horizontal component of VL from your phasor diagram. 

• Repeat the previous step by constructing an RLC circuit this time. Again measure 
the current value through the circuit. You should draw the phasor diagram in this 
case by assuming that VC is 90° behind VR (or perpendicular in the negative 
direction). Then draw two circles centered at the beginning of the phasor for VR 
and the tip of the phasor for VC with radii equal to Vapp and VL, respectively. Draw 
Vapp and VL phasors from the centers of the circles to the intersection point. Using 
the current value and the internal resistance of the inductor determined in the 
previous step, determine the capacitive and inductive reactances first and then 

( ) ( ) IZXXRRIV CLLapp =-++= 22
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calculate the value of the capacitor and the inductor. Finally determine the phase 
angle F  and the average power dissipated in the RLC circuit. 
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ALTERNATING CURRENTS – SERIES 
CIRCUITS 
 

Name & Surname : Experiment # : 
Section : Date : 
 

 

 

DATA: 
 

P A R T  –  1 :  R C  C I R C U I T  
 
 R C  c i r c u i t  d i a g r a m :  
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Description / Notation Value & Unit  
 

Potential difference 
across the resistance VR = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.  

Potential difference 
across the capacitor VC = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Applied potential Vapp = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 
Phasor Diagram of the RC Circuit: Scaling factor: 

 

Angle between VC and VR = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
 

P A R T  –  2 :  R L  C I R C U I T  
 
R L  c i r c u i t  d i a g r a m :  
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Description / Notation Value & Unit  

Current in the circuit I = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Potential difference 
across the resistance VR = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Potential difference 
across the inductor VL = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Applied potential Vapp = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
 

Phasor Diagram of the RL Circuit: Scaling factor: 

 

Description / Symbol Value / Calculation Result 

Potential difference due to 
the internal resistance 
of the inductor VrL = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  

 

Internal resistance  
of the inductor rL = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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PART – 3: RLC CIRCUIT 
 

R L C  c i r c u i t  d i a g r a m :  

 

Description / Notation Value & Unit  
 

Current in the circuit I = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Potential difference 
across the resistance VR = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Potential difference 
across the inductor VL = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Potential difference 
across the capacitor VC = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Applied potential Vapp = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
 

Phasor Diagram of the RLC Circuit: Scaling factor: 
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Description / Symbol Value / Calculation Result 
 (show step by step) 

Capacitive  
reactance XC = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Value of the  
capacitor C = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Inductive  
reactance XL = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Value of the 
 inductor L = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Internal resistance  
of the inductor rL = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Total resistance Rtot = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Impedance Z = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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Description / Symbol Value / Calculation Result 
 (show step by step) 

 

Phase angle j   = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Average dissipated 
power  P = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 
QUESTION :  
 

• If the angle between VC and VR is different from 90°, what could the reason be? 
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3. REFLECTION AND REFRACTION 
 

OBJECTIVE : To study the law of reflection, principles of mirrors, lenses, and 
prism by ray tracing. 

THEORY : In this experiment you will be tracing the light rays reflected or 
refracted from various optical elements and determine some relevant quantities of these 
elements. Here are some crucial points you may need. 
 

• In a plane mirror the incident and reflected angles with respect to the normal are 
equal  

• Focal lengths of concave and convex mirrors are simply half the radius of 
curvature for the respective surface. 

 

• Focal length and the radius of curvature of a lens is related through the following 
expression: 

 

 where n is the index of refraction. 
• We can calculate the index of refraction of the transparent material a prism made 

of as following: 

 

where A is the prism angle at the corner that the light rays are refracted and Dmin 
is the minimum angle of deviation between the incident and the refracted rays. 

 

APPARATUS : Ray box, lens, mirror and prism set, ruler, protractor. 

PROCEDURE : 

• For each of the following experiments, place the optical element and light source 
on a different sheet of paper. Draw the outline of the optical element, paths of 
incident, reflected, and refracted rays as needed.  

• You will determine the radii of curvatures using the Chord Method. First draw at 
least two chords on the curved (circular) outline of the elements. Then draw 
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perpendicular bisectors to each of the chords. The center of the circle is where the 
bisectors intersect. You can determine the radius by measuring the perpendicular 
distance between the intersection point and any point on the curved outline.  

• Show your Chord Method Analysis on the back of each corresponding sheet. 

• In case of the prism, determine the minimum angle of deviation Dmin and then the 
index of refraction for the material of the prism. 
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REFLECTION AND REFRACTION 
 

Name & Surname : Experiment # : 
Section : Date : 
 

 

DATA, CALCULATIONS and RESULT: 
 

P A R T  I :  R E F L E C T I O N  
 
 
A) Plane Mirror : 

 Incident ray angle qi = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 Reflected ray angle qr = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 
 

B) Concave – Converging Mirror: 

 Focal Length of the mirror fEV = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

  
 Radius of the mirror 
 (From Chord Method) R = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Focal length of the mirror 
 (From Chord Method) fCV = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 % difference in focal lengths = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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C) Convex – Diverging Mirror: 

 Focal Length of the mirror fEV = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

  
 Radius of the mirror 
 (From Chord Method) R = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 Focal length of the mirror 
 (From Chord Method) fCV = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 Thickness of the mirror  x = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 % difference in focal lengths = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 
 

P A R T  I I :  R E F R A C T I O N  
 

D) Convex – Converging Lens : 

 Refraction Index n = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 Focal Length of the lens fEV = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

  
 Radius of the convex lens  
 (From Chord Method) R = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 Focal length of the convex lens  
 (From Chord Method) fCV = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 % difference in focal lengths = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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E) Concave – Diverging Lens: 

 Refraction Index n = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 Focal Length of the lens fEV = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 Radius of the concave lens  
 (From Chord Method) R = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 Focal length of the concave lens  
 (From Chord Method) fCV = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 % difference in focal lengths = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

 

F) Prism: 

 Minimum deviation 
 between incident  Dmin = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 and refracted rays 

 Prism angle A = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 Index of Refraction nEV = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

  

 True Value for the 
 Index of Refraction nTV = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 
 % difference for n = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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4. THIN LENSES 
 

OBJECTIVE : To determine the focal lengths, radii of curvature and index of 
refraction of various lenses, and to investigate image formation by lens combinations. 

THEORY : A thin lens is defined as a lens whose thickness is much smaller 
than its focal length. Thin lenses that are thin at the edge and thick at the center bend the 
light rays toward the optical axis (converging lenses) and those that are thick at the edge 
and thin at the center bend the light rays away from the optical axis (diverging lenses). 

 
Thin lenses have two basic equations, the lens equation, 

 

and the lens maker's equation: 
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where r1 and r2 are the radii of curvatures of each surface. If both surfaces have the 
same curvature, the lens maker's equation becomes 

 

where plus and minus signs are for converging and diverging lenses, respectively. 
 
The sign conventions for the quantities used in the equations above are as following: 
 

• The image distance is positive if the image is formed on the right side of the lens 
and negative if it forms on the left side. We assume that the light source is on the 
left. 

• Similarly, the object distance is positive if the object is on the left side of the lens 
and negative if it is on the right side. (If the object is actually an image from 
another lens, it may be on the right side.) 

• The radii of curvatures are positive if the corresponding center for a surface is on 
the right side. This is the reason for positive and negative focal lengths for 
converging and diverging lenses. 

• The magnification m, which is the ratio of the image size to the object size, is m= 
-i/o. To denote the inverted images a minus sign is added. 

 
Spherometer: 

Spherometer is an instrument to determine very small thicknesses and the radius of 
curvature of a surface. First you should place the spherometer on a level surface to get a 
calibration reading (CR). You turn the knob at the top until all four legs touch the surface. 
When the middle leg also touches the surface, the knob will first seem to be free and then 
tight. The reading at this position will be the calibration reading (CR). Then you should 
place the spherometer on the curved surface and turn the knob until all four legs again 
touch the surface. The reading at this position will be the measurement reading (MR). 
You will read the value from the vertical scale first and then the value on the dial will 
give you the fraction of a millimeter. Then you can calculate the radius of curvature of 
the surface as: 

 

where D = |CR-MR| and A is the distance between the outside legs. 
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Figure 4. Spherometer. 

APPARATUS : Various thin lenses, light source and cross object, ruler, screen, 
spherometer. 

PROCEDURE : 

• Mount large and small converging lenses one by one. Adjust the position of lenses 
and the screen to obtain a very sharp and clear image of the illuminated cross. By 
measuring object and image distances for two different positions of lenses, 
calculate focal length and magnifications of lenses separately. 

• Use the two converging lenses to form an image of the object. Measure the image 
distance from the nearest lens and calculate this distance from the lens equation 
applied to each lens. Repeat this using converging lens of known focal length and 
a diverging lens. Calculate the focal length of the diverging lens.  

• Measure the radius of curvature of any large lens by a spherometer. (R1=R2=R). 
Determine the refractive index of the lens. 
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THIN LENSES 
 

Name & Surname : Experiment # : 
Section : Date : 

 

DATA, CALCULATIONS and RESULTS: 

P A R T  I :  C O N V E R G I N G  L E N S E S  
 

A) Small Converging Lens: 
 

Object distance o1 = . . . . . . . . . . . . . Object distance o2 = . . . . . . . . . . . . . . .  

Image distance i1 = . . . . . . . . . . . . . Image distance i2 = . . . . . . . . . . . . . . . 

Focal length f1 = . . . . . . . . . . . . . Focal length f2 = . . . . . . . . . . . . . . . 

Magnification m = . . . . . . . . . . . . . Magnification m = . . . . . . . . . . . . . . . 

Average focal length faverage =  . . . . . . . . . . . . . . . . . . . . . . . . . 
 
 
B) Large Converging Lens: 
 

Object distance o1 = . . . . . . . . . . . . . Object distance o2 = . . . . . . . . . . . . . . .  

Image distance i1 = . . . . . . . . . . . . . Image distance i2 = . . . . . . . . . . . . . . . 

Focal length f1 = . . . . . . . . . . . . . Focal length f2 = . . . . . . . . . . . . . . . 

Magnification m = . . . . . . . . . . . . . Magnification m = . . . . . . . . . . . . . . . 

Average focal length faverage =  . . . . . . . . . . . . . . . . . . . . . . . . . 
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P A R T  I I :  L E N S  C O M B I N A T I O N  
C) Two Converging Lenses: 

 Draw the diagram of the system: 

 

 Measure: 

 Object distance  
 for the first lens o1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 Image distance  
 for the second lens i2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Distance between the lenses  d = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Calculate: 

 Image distance 
 for the first lens i1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Image distance 
 for the second lens i2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 % Error for i2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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D) Large Converging & Large Diverging Lenses: 

 Draw the diagram of the system: 

 

 Measure: 

 Object distance  
 for the first lens o1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 Image distance  
 for the second lens i2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Distance between the lenses  d = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Calculate: 

 Image distance 
 for the first lens i1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Object Distanece of 2nd lens O2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Focal length 
 of the diverging lens fdiverging = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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P A R T  I I I :  S P H E R O M E T E R  

 True Value of the  
 Index of Refraction nTV = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 Distance between the legs A  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Calibration reading CR = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Measurement reading MR = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Difference in readings D = ½CR - MR½= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 Radius of curvature  

 of the lens surface R =  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 Index of Refraction ncal = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 % Error for Index of Refraction, n =. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

D
AD
62

2

+
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5. THE PRISM SPECTROMETER 
 

OBJECTIVE : To study the refraction of light by a glass prism, and to construct 
the dispersion curve for the prism. 
 
THEORY : Snell’s law states that light at a specific wavelength refracts at 
an angle determined by  

 

However, index of refraction varies as a function of wavelength. This is called dispersion 
and when you plot the index of refraction as a function of wavelength, the curve you 
obtain is called the dispersion curve for that material. The functional dependence of the 
index of refraction to the wavelength is given by the empirical relationship: 

. 

We can study the dispersion curve using a prism, since the light shining on a prism will 
separate into individual lines because of the dispersion phenomenon. If we use a spectral 
lamp, then the individual lines will belong to the spectrum of the element that the spectral 
lamp is made of. Orienting the prism until you get the minimum deviation angle between 
the incident and the refracted light rays for each spectral line will give you the data 
necessary to plot the dispersion curve for the material of the prism. Then you can 
calculate the index of refraction for each wavelength using the following expression: 

 

where a is the corner angle of the prism where the light is refracted. 

 
APPARATUS : Spectrometer, mercury lamp and its power supply, prism. 
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PROCEDURE :  

• Adjust the zero position of the spectrometer so that it is equal to the absolute zero. 
Align the collimator and the telescope such that you can see the slit clearly and 
sharply through the telescope. Next, adjust the cross-hair so that it is on the slit. 
Then, fix the telescope and rotate the body until the zero positions of the body 
and the telescope are aligned. Finally, fix the body and release the telescope to 
move freely.  

• Set the prism in the center of the prism table.  

• Using the white light source, place the prism in such a way that the light falls on 
both faces of the prism. Then measure the reflected ray from both side and 
calculate the angle A. 

• Using the mercury lamp as the light source, determine the angle of minimum 
deviation for all the lines in the mercury spectrum. Then calculate the refractive 
index of the prism corresponding to different wavelengths (colors). 

• On an ordinary graph paper, plot n versus 1/l2 to obtain the dispersion curve. 
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THE PRISM SPECTROMETER 
 

Name & Surname : Experiment # : 
Section : Date : 
 

 

DATA: 

White light reflection: 

Angle (left) qleft  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Angle (right) qright = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Prism Angle a  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

Measurements for the Mercury spectrum: 
Show your calculations in detail for the first row, repeat the same for the rest. 
 

COLOR l (Ao) q 
Dmin  

(show your calculations) 

Yellow-1 
Yellow-2 

5790 
5769 

 
 
 
 

 

Green 5460  
  

Blue (weak) 4916  
  

Blue 4358  
  

Violet-1 4077  
  

Violet-2 4046  
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CALCULATIONS: 

Show your calculations in detail for the first row, repeat the same for the rest. 

COLOR 

1/l2 

(        ) 
n =  n 

(result) 

Yellow-1 
Yellow-2  

 

 

 

 

 

 

Green  

 

 

 

 

Blue (weak)  

 

 

 

 

Blue  

 

 

 

 

Violet-1  

 

 

 

 

Violet-2  

 

 

 

 

[ ]
)2/(
2/)( min

a
a
Sin

DSin +
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From the graph, choose two SLOPE POINTS other than data points, 
 
 
 SP1  : (  ;  ) 
 
 
 SP2  : (  ;  ) 
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R E S U L T S :  

 

Notation Calculations (show each step) Result 

A = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

B = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Dimensional Analysis of A: 

 

Dimensional Analysis of B: 
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6. DIFFRACTION GRATING 
 

OBJECTIVE : To use a diffraction grating to determine the wavelengths 
corresponding to various spectral lines. 

THEORY : Light shining perpendicularly on a diffraction grating produces 
an interference pattern on a screen or on your retina if you are viewing from behind the 
grating. Positions of the maxima in the resulting interference pattern are given by the 
grating equation: 

 

where m is the order of the spectrum, l is the wavelength of the incident light, d is the 
distance between the lines on the grating, and q is the angle at which the maximum 
intensity occurs. Angles are measured with respect to the incident light direction. 

 
If the incident light has components with many wavelengths then you will see these 
different wavelengths separated from each other. The resolving power of a grating is 
given in terms of its ability to separate two wavelengths which differ by Dl: 

 

where l is the average of these two wavelength values. Resolving power is also related 
to the number of lines (N) on the grating through 

 

The angular dispersion D of a grating is defined as a measure of the angular separation 
produced between two monochromatic light waves whose wavelengths are close to each 
other. 

 

where Q is the average of the angles corresponding to the two lines that are close to each 
other in wavelength and l is the average of these wavelength. 

ql sindm =

l
l
D

=R

NmR =

ll /tan/ Q=Q= ddD

00 

1800 

900 
source 

m=0 

m=1 

m=2 

grating 

telescope 
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APPARATUS : Spectrometer, sodium lamp with its power supply, discharge 
tube with its power supply 

PROCEDURE : 

• Adjust the zero position of the spectrometer so that it is equal to the absolute zero. 
Align the collimator and the telescope such that you can see the slit clearly and 
sharply through the telescope. Next, adjust the cross-hair so that it is on the slit. 
Then, fix the telescope and rotate the body until the zero positions of the body 
and the telescope are aligned. Finally, fix the body and release the telescope to 
move freely.  

• Mount the diffraction grating carefully on the spectrometer. 

• Using the sodium lamp as the light source, determine the angular position of the 
first order maximum for the yellow line on either side of the center. Calculate the 
diffraction separation d. 

• Using the discharge tube containing unknown gas as the light source, determine 
the angles for all visible lines. Then calculate the wavelengths of those spectrum 
lines. Identify the gas in the discharge tube by making use of the table in 
Appendix A. 

• Selecting two barely separated lines in your discharge tube spectrum, determine 
the angular dispersion of your grating. 

• Use the white light source to determine the wavelength limits for visible light. 

   



 

 99 

DIFFRACTION GRATING 
 

Name & Surname : Experiment # : 
Section : Date : 
 

 

DATA and CALCULATIONS: 

 
 

P A R T  I :  D E T E R M I N A T I O N  O F  
D I F F R A C T I O N  G R A T I N G  C O N S T A N T ,  d  

 

Wavelength of  
sodium doublet l  = 5890 Å and 5895 Å average 5893 Å 

Order of the spectrum m  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Angle of spectrum line qleft  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
(Uncalibrated) 

 

Angle of spectrum line qright  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
(Uncalibrated) 

Average angle qave  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Diffraction Separation d  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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P A R T  I I :  U N K N O W N  D I S C H A R G E  T U B E  
 

Discharge Tube Number  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Show your calculations in detail for the first row, repeat the same for the rest. 

Color 
qleft 

(uncalibrated) 
qright 

(uncalibrated) qaverage 

l 
(           ) 

   
 
 
 
 

  

     

     

     

     

     

     

     

     

 
 

P A R T  I I I :  D I S P E R S I O N  M E A S U R E M E N T  
 

COLOUR 
qleft 

(uncalibrated) 
qright 

(uncalibrated) q 

l  
(           ) 

     

     

Average :   

- 
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P A R T  I V :  W H I T E  L I G H T  S P E C T R U M  
 

COLOUR 
qleft 

(uncalibrated) 
qright 

(uncalibrated) qaverage 

l 
 (           ) 

Red End     

Violet End     

 

RESULTS: 

Gas in the Discharge Tube is (check the appropriate box) : 

 

 Argon Krypton Hydrogen 

 

 Helium Mercury Neon 

 

 

Dispersion of the spectrometer: 

 
 
D = tan qave / lave  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

Limits of the visible range : 

 

 . . . . . . . . . . . . .  < l ( ) <  . . . . . . . . . . . . .  

- 
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QUESTIONS :  
 

1. What is the maximum number of orders that can be observed with 
the grating used in the experiment? 

2. Why is it preferable to use a grating with a small d for accurate 
spectral analysis? 

3. Should the angular separation between two lines be the same for 
each order? Answer the question through a mathematical 
derivation. 

4. Prove that the angular dispersion of a grating can be written as: 

 

 

 

l/tanQ=D
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7. STEFAN-BOLTZMANN RADIATION 
LAW 

 

OBJECTIVE : The aim of this experiment is to determine the rate of temperature 
dependency in the Stefan-Boltzmann Radiation Law. 

THEORY : Radiation from an object is observed to be dependent on its 
temperature. The distribution of photon frequencies can be understood in terms of 
quantum physics where the radiation occurs in the form of energy packets or photons. It 
has been observed that the wavelength at which the maximum intensity occurs (Wien’s 
displacement law) or the total radiated power integrated over all wavelengths per unit 
area depends only on the temperature of the object. The latter is the subject of our 
experiment and is called the Stefan-Boltzmann Radiation Law. It states that the total 
integrated radiated power per unit area from an object depends on the fourth power of its 
temperature: 

 

where s is the Stefan-Boltzmann constant (  W/m2K4).  

The object that produces the radiation in this experiment is an incandescent tungsten 
bulb. The actual part that radiates is the tungsten filament. Since the resistance of metals 
increases as a function of temperature (  where temperature 
coefficient of resistivity for tungsten is K-1), we can determine its 

temperature by measuring its electrical resistance through Ohm’s law: .  

We will use an infrared detector that is sensitive over a wavelength region between 0.5 
to 40 µm. We will be measuring the total power radiated over this range only, but this 
should give us a value proportional to the total power radiated. Its output is in millivolts. 

APPARATUS : Stefan-Boltzmann Lamp (a 12 V bulb), fuse and switch set, 
radiation sensor, reflecting heat shield, multimeter set to 200-millivolt range, multimeter 
set to 10-A range, Data Logger and the charge sensor, Pasco 24-V power supply, various 
leads and stand for the radiation sensor. 

PROCEDURE: 

1. Multimeters and the power supply are placed on the workbench at their proper 
settings. If you notice something is not set right, please inform your instructor, 
otherwise DO NOT MAKE ANY CHANGES IN THE SETTINGS. Make sure 
that the heat shield is placed between the bulb and the sensor, reflective side 
facing the sensor. 

,4TR s=

8106703.5 -´=s

))(1( 00 TTRR -+= a
3105.4 -´=a

I
VR =
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2. You will determine the resistance of the tungsten filament at room temperature 
first. For this purpose adjust the power supply current to its minimum value, 0.2 
A. You will be reading the current value from the multimeter set to 10-A range 
and the potential across the filament from the data logger set as a voltmeter. 

3. Calculate the resistance using the Ohm’s law. This will be your R0. Your 
instructor will give you the value of the room temperature. Make sure that all 
your temperature values are in Kelvin.  

4. Make sure that the metal ring on the detector has been pushed all the way to the 
front, otherwise the detector readings might be faulty. 

5. While increasing the current very slowly, record the current, the potential drop 
across the lamp, and the sensor output at each current setting. DO NOT 
EXCEED 3 AMPERES.  

6. Calculate the resistance of the tungsten filament at each current setting using the 
Ohm’s law and divide these values by the value at room temperature that you 
have determined in step 2. 

7. Using the temperature coefficient of resistivity for tungsten, K-1, 
and , determine the temperature of the tungsten filament 
at each current setting. 

8. Plot your radiation sensor output versus temperature data on a log-log paper. 
Draw a straight line that passes through all the data points symmetrically, that is, 
either all the points fall on the straight line or equal number of points fall each 
side of the line. 

3105.4 -´=a
))(1(/ 00 TTRR -+= a
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9. A power law expression produces a linear plot when plotted on a log-log graph 
paper. Determine the slope of this straight line by picking two points far apart 
from each other. Slope is the ratio of the actual vertical distance to the actual 
horizontal distance on the graph. Since plotting on a log-log graph paper is 
equivalent to taking the base-10 logarithm of the values and then plotting them 

on a regular paper, slope is calculated through:  

where x and y values are direct readings from the graph. 

10. Compare your result with the actual value of n = 4. What is your percentage error?  
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STEFAN-BOLTZMANN RADIATION LAW 
 

Name & Surname : Experiment # : 
Section : Date : 
 

 

DATA: 

Draw the circuit diagram: 

 

Write down the formula to calculate the temperature from the resistance 
 Solve for T: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  T = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

To = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Io = 0.20 Amp. Vo = . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Ro = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  a = 4.403  x 10-3  K-1

))(1(/ 00 TTRR -+= a
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Current 
I (          ) 

Potential 
Across  

the lamp 
V (           ) 

Radiation 
Sensor 
output,  

VRad  (         ) 

Resistance 
of the 

filament,  
R=V/I (       ) 

 
 

 
R / Ro 

Temperature 
of the 

filament, 
T (        ) 
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A) From the graph, choose two SLOPE POINTS other than data points, 
 
 
 SP1  : ( ; ) 
 
 SP2  : ( ; ) 
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B) Calculate, 
 
 
Description / Formula Calculations (show each step) Result 

n = SLOPE = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

% error = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . .  

 

QUESTIONS : 

1. If the energy spectrum is shifting upward in the frequency and the amount of 
region that you are sampling with the infrared sensor is decreasing as the 
temperature increases, how would this affect your final result? Comment 
qualitatively on the error caused by this effect and other sources of errors in this 
experiment.  
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8. THE BALMER LINES OF HYDROGEN 
AND THE RYDBERG CONSTANT 

 

OBJECTIVE : To observe the Balmer line spectra series of Hydrogen and to 
determine the Rydberg constant for hydrogen using a grating spectrometer. 

THEORY : Elements emit light at characteristic wavelengths when they are 
excited through heating, electrical discharge, etc. In 1885, Balmer observed some of the 
lines in the Hydrogen spectrum and noticed that a group of them could be described by 

. 

When Bohr put forward his model for the Hydrogen atom, it was easy to show that the 
Balmer lines are produced by the photon emissions when excited hydrogen atoms decay 
to the second energy level from upper levels. Since Bohr model gives the relationship 
between the wavelength of the emitted light when an electron moves from an energy 
level ni to nf and the principal quantum numbers ni and nf: 

 

where R is the Rydberg constant that can be expressed as 

 

where m is the mass of the electron. You may show that the Balmer lines are obtained 
when nf=2 and ni=n. 

PROCEDURE : 

• Adjust the zero position of the spectrometer so that it is equal to the absolute zero. 
Align the collimator and the telescope such that you can see the slit clearly and 
sharply through the telescope. Next, adjust the cross-hair so that it is on the slit. 
Then, fix the telescope and rotate the body until the zero positions of the body 
and the telescope are aligned. Finally, fix the body and release the telescope to 
move freely.  

• Mount the diffraction grating carefully on the spectrometer. 

• Using the sodium lamp as the light source, determine the angular position of the 
first order maximum of the yellow line on either side of the center. Calculate the 
diffraction separation d. 

• Using the discharge tube containing hydrogen gas as the light source, determine 
the wavelengths of the Balmer lines in the hydrogen spectrum. Calculate the 
Rydberg constant for each of the determined wavelengths. Calculate the actual 

42

2
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=
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ø
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æ
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value of the Rydberg constant using the equation above and compare with your 
average experimental result. 
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THE BALMER LINES OF HYDROGEN AND 
THE RYDBERG CONSTANT 
 

Name & Surname : Experiment # : 
Section : Date : 
 

 

DATA : 

Order of the spectrum m  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 
P A R T  I :  D E T E R M I N A T I O N  O F  

D I F F R A C T I O N  G R A T I N G  C O N S T A N T ,  d  
 

Wavelength of  
sodium doublet l  = 5890 Å and 5895 Å average 5893 Å 

 

Angle of spectrum line qleft  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
(Uncalibrated) 

 

Angle of spectrum line qright  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
(Uncalibrated) 

 

Average angle qave  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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P A R T  I I :  H Y D R O G E N  S P E C T R U M  L I N E S  
 

A) For Red Spectrum Line 

 Angle of spectrum line qleft = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 Angle of spectrum line qright = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 Average angle qave = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

B) For Green Spectrum Line 

 Angle of spectrum line qleft = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 Angle of spectrum line qright = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 Average angle qave = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

C) For Violet Spectrum Line 

 Angle of spectrum line qleft = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 Angle of spectrum line qright = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 Average angle qave = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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CALCULATIONS: 
 
Description / Symbol Calculation (show each step) Result 
 

Diffraction Grating 
Constant d = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . .  

 

 

Wavelength for the  
Red Line lred = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . 

 

 

Wavelength for the  
Green Line lgreen = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . 

 

 

Wavelength for the  
Violet Line lviolet = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . 
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A) For Red Spectrum Line 

 Initial state ni = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Final state nf = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Rydberg constant Rred = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

B) For Green Spectrum Line 

 Initial state ni = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Final state nf = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Rydberg constant Rgreen = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C) For Violet Spectrum Line 

 Initial state ni = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Final state nf = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Rydberg constant Rviolet = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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RESULTS: 
 
Description / Symbol Calculation (show step by step) Result 

Average value of 
Rydberg constant REV = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Calculated value of 
Rydberg constant RCV = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

% Error for R = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . 

 

Show the Dimensional Analysis of Rydberg Constant clearly:  
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APPENDICES 
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A. Spectra for various Gases: 

HYDROGEN (H2): Strong violet, blue and red lines are obvious, although others may 
be seen. 

Color Wavelength, Å 
Violet 4200 
Violet 4400 
Blue 4900 
Red 6700 

HELIUM (He): Strong spectrum with 1 violet, 2 green, 1 yellow, and 2 red lines being 
prominent. 

Color Wavelength, Å 
Violet 4000 
Blue 4500 
Blue 4550 
Green 5000 
Green 5100 
Yellow 5850 
Red 6500 
Red 6800 
Red 7200 

KRYPTON (Kr): Strong spectral lines in violet, green, orange, and red portions. 

Color Wavelength, Å 
Violet 4300 (hazy) 
Violet 4400 (hazy) 
Violet 4500 
Violet 4550 
Blue 4900 
Green 5600 
Green 5650 
Green 5700 
Yellow 5900 
Red 6100 
Red 6300 
Red 6500 
Red 6650 
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NEON (Ne): Strong spectrum of multiple lines in green, yellow, orange, and red. Note 
the absence of violet lines.  

Color Wavelength, Å 
Blue 4750 
Blue 4900 
Green 5100 
Green 5250 
Green 5600 
Green 5700 
Yellow 5800 
Yellow 5900 
Yellow 6000 
Red 6050 
Red 6100 
Red 6150 
Red 6200 
Red 6600 
Red 6650 
Red 6700 
Red 6850 
Red 7050 
Red 7150 

MERCURY (Hg): Strong spectrum composed of 2 violet, 1 green, 1 yellow, and 1 
orange lines. 

Color Wavelength, Å 
Violet 4500 
Violet 4600 
Green 5000 
Green 5050 
Green 5600 
Yellow 5900 
Red 6100 
Red 6250 
Red 6600 
Red 6800 
Red 7200 
Red 7300 
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ARGON (Ar) : Weak multiple lines, most intense in violet, least in red. 

Color Wavelength, Å 
Violet 4200 (hazy) 
Violet 4400 (hazy) 
Violet 4600 
Green 4950 
Green 5250 
Green 5500 
Green 5600 
Green 5700 
Yellow 5950 
Red 6100 
Red 6250 
Red 6300 
Red 6400 
Red 6500 
Red 6600 
Red 6700 
Red 6800 
Red 7100 
Red 7200 
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B. Physical Constants: 
 

Planck’s constant h 6.626x10-34 Jsec or 4.136x10-21Mev sec 

  1.05x10-34J.sec or 6.58x10-22 Mev.sec 

Universal Gas Constant R 8.314 J/oK mole 

Avagadro’s Number NA 6.022x1023 

Boltzman Constant k 1.381x10-23 J/oK or 8.617x10-5 ev/oK 

Electron charge e 1.602x10-19 C 

Speed of light in vacuum c 2.998x108 m/sec 

Stefan-Boltzman Constant s 5.67x10-8 W/m2.oK4 

Gravitational Constant G 6.672x10-11 N.m2/kg2 

Gravitational acceleration g 9.81 m/sec2 

Permeability of Vacuum µo 1.257x10-6 H/m 
or 
4p x 10-7 H/m Permitivity of Vacuum eo 8.854x10-12 C2/J.m 

Fine structure constant  7.297x10-3 

First Bohr radius ao 5.29x10-11 m 

Charge to mass ratio of the electron e/m 1.759x1011 C/kg 

Bohr Magneton µB 9.27x10-24 A.m2 

Atomic mass unit (amu) u 1.66x10-27 kg or 931.5 Mev 

Electron rest mass me 9.11x10-31 kg or 511 kev 

Proton rest mass Mp 1.672x10-27 kg or 938.2 Mev 

Neutron rest mass Mn 1.675x10-27 kg or 939.6 Mev 

Compton wavelength of electron lC 2.43x10-12 m 

  197 Mev. Fermi 

Standard volume of ideal gas  2.24x10-2 m3/mole 

1 eV  1.602x10-19 J 

1 amu  931.14 Mev 

1 g  5.610x1026 Mev 

1 electron mass  0.51098 Mev 

Ice point To 273.16 oK 

!

( )hce oea 2/2=

c!
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C. Conversion Tables: 
 
LENGTH 
 cm meter km  inch foot mile 

cm 1 10-2 10-5 108 0.3937 3.281x10-2 6.214x10-6 

meter 100 1 10-3 1010 39.37 3.281 6.214x10-4 

km 105 1000 1 1013 3.937x104 3281 0.6214 

 108 1010 1013 1 3.937x10-9 3.281x10-10 4.214x10-14 

inch 28.540 0.0254 2.540x10-5 2.540x108 1 0.0833 1.578x10-5 

foot 30.48 0.3048 3.048x10-4 3.048x109 12 1 1.894x10-4 

mile 1.609x105 1609 1.609 1.609x1013 6.336x104 5280 1 
 
AREA 

 m2 cm2 ft2 in.2 circ mile 
m2 1 104 10.76 1550 1.974x109 

cm2 10-4 1 1.076x10-3 0.1550 1.974x105 

ft2 9.290x10-2 929.0 1 144 1.833x108 

in.2 6.452x10-4 6.452 6.944x10-3 1 1.273x106 

circular mill 5.067x10-10 5.065x10-6 5.454x10-9 7.854x10-7 1 
 
VOLUME 

 m3 cm3 liter ft3 in.3 

m3 1 106 1000 35.31 6.102x104 

cm3 10-6 1 1.000x10-3 3.531x10-5 6.102x10-2 

liter 1.000x10-3 1000 1 3.531x10-2 61.02 
ft3 2.832x10-2 2.832x104 28.32 1 1728 
in.3 1.639x10-5 16.39 1.639x10-2 5.787x10-4 1 

 
MASS 
 kg gram ounce pound amu m slug ton 
kg 1 103 35.27 2.205 6.024x1026 1.021x10-1 10-3 

gram 10-3 1 3.527x10-2 2.205x10-3 6.024x1023 1.021x10-4 10-6 

ounce 2.835x10-2 28.35 1 6.250x10-2 1.708x1025 2.895x10-3 2.835x10-5 

pound 4.536x10-1 4.536x102 16 1 2.372x1025 4.630x10-2 4.536x10-4 

amu 1.66x10-27 1.66x10-24 5.854x10-26 3.66x10-27 1 1.695x10-28 1.660x10-30 

m slug 9.806 9.806x103 3.454x102 21.62 5.9x1027 1 9.806x10-3 

ton 103 106 3.527x104 2.205x10-3 6.024x1029 1.021x102 1 
 
TIME 

 second minute hour year 
second 1 1.667 x 10-2 2.778 x 10-4 3.165 x 10-8 

minute 60 1 1.667 x 10-2 1.901 x 10-6 

hour 3600 60 1 1.140 x 10-4 

year 3.156 x 107 5.259 x 105 8.765 x 103 1 
 

A0

A0
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FORCE 
 Nt Dyne Kg F 
Nt 1 105 0.1020 

Dyne 10-5 1 1.020x10-6 

Kg F 9.807 9.807x105 1 
 
PRESSURE 
 pa mm Hg mbar kgf/m2 dyne/cm2 atmosphere 
Pascal 1 7.501x10-3 10-2 0.1020 10 9.869x10-6 
torr 1.333x102 1 1.333 13.6 1.333x103 1.316x10-3 
mbar 102 0.7501 1 10.20 103 9.869x10-4 

dyne/cm2 0.1 7.501x10-4 10-3 10.20x10-3 1 9.869x10-7 

kgf/m2 9.807 9.807x10-2 9.807x10-2 1 98.07 9.679x10-5 

atm 1.013x105 7.601x102 1.013x10-3 1.033x104 1.013x106 1 
 
ENERGY 

 Joule kilowatt-hour Btu erg Calorie electron volt 
Joule 1 2.778x10-7 9.480x10-4 107 0.2389 6.242x1018 

kilowatt-hour 3.6x106 1 3.412x103 3.6x1013 8.6x105 2.247x1025 

Btu 1.055x103 2.930x10-4 1 1.055x1010 2.468x102 6.585x1021 

erg 10-7 2.778x10-14 9.480x10-11 1 2.389x10-8 6.242x1011 

calorie 4.187 1.163x10-6 4.053x10-3 4.187x107 1 2.613x1019 

electron volt 1.602x10-19 4.450x10-26 1.519x10-22 1.602x10-12 3.827x10-20 1 
 
POWER 

 watt erg/sec calorie/sec kgfm/sec Btu/sec HP 
watt 1 107 0.2388 0.1020 3.413 1.360x10-3 

erg/sec 10-7 1 2.388x10-8 1.020x10-8 3.413 x10-7 1.360x10-10 

calorie/sec 4.187 4.187x107 1 0.4268 14.29 5.694x10-3 

kgfm/sec 9.807 9.807x107 2.343 1 33.47 133.3 

Btu/sec 0.2931 2.931x106 6.999x10-2 2.987x10-2 1 3.982x10-4 

HP 735.5 7.355x109 175.7 75 2.511x103 1 
 
MAGNETIC FIELD 

 gauss TESLA milligauss 
gauss 1 10-4 1000 
TESLA 104 1 107 

milligauss 0.001 10-7 1 
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