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Foreword 
 
This book is written with a dual purpose in mind. Firstly, it aims to guide the students in 
the experiments of the elementary physics courses. Secondly, it incorporates the 
worksheets that the students use during their 2-hour laboratory session. 
 
There are six books to accompany the six elementary physics courses taught at Bogazici 
University. After renovating our laboratories, replacing most of the equipment, and 
finally removing the 110-V electrical distribution in the laboratories, it has become 
necessary to prepare these books. Each book starts with the basic methods for data taking 
and analysis. These methods include brief descriptions for some of the instruments used 
in the experiments and the graphical method for fitting the data to a straight line. In the 
second part of the book, the specific experiments performed in a specific course are 
explained in detail. The objective of the experiment, a brief theoretical background, 
apparatus and the procedure for the experiment are given in this part. The worksheets 
designed to guide the students during the data taking and analysis follows this material 
for each experiment. Students are expected to perform their experiment and data analysis 
during the allotted time and then hand in the completed worksheet to the instructor by 
tearing it out of the book.  
 
 
We would like to thank the members of the department that made helpful suggestions 
and supported this project, especially Arsin Arşık and Işın Akyüz who taught these 
laboratory classes for years. Our teaching assistants and student assistants were very 
helpful in applying the procedures and developing the worksheets. Of course, the smooth 
operation of the laboratories and the continuous well being of the equipment would not 
be possible without the help of our technicians, Erdal Özdemir and Hüseyin Yamak, who 
took over the job from Okan Ertuna. 
 
Erhan Gülmez & Zuhal Kaplan 
İstanbul, September 2007. 
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Introduction 

Physics is an experimental science. Physicists try to understand how nature works by 

making observations, proposing theoretical models and then testing these models through 

experiments. For example, when you drop an object from the top of a building, you 

observe that it starts with zero speed and hits the ground with some speed. From this 

simple observation you may deduce that the speed or the velocity of the object starts from 

zero and then increases, suggesting a nonzero acceleration.  

Usually when we propose a new model we start with the simplest explanation. Assuming 

that the acceleration of the falling object is constant, we can derive a relationship between 

the time it takes to reach the ground and the height of the building. Then measuring these 

quantities many times we try to see whether the proposed relationship is valid. The next 

question would be to find an explanation for the cause of this motion, namely the 

Newton’s Law. When Newton proposed his law, he derived it from his observations. 

Similarly, Kepler’s laws are also derived from observations. By combining his laws of 

motion with Kepler’s laws, Newton was able to propose the gravitational law of 

attraction. As you see, it all starts with measuring lengths, speeds, etc. You should 

understand your instruments very well and carry out the measurements properly. 

Measuring things correctly is absolutely essential for the success of your experiment.  

Every time a new model or law is proposed, you can make some predictions about the 

outcome of new and untried experiments. You can test the proposed models by 

comparing the results of these actual experiments with the predictions. If the results 

disagree with the predictions, then the proposed model is discarded or modified. 

However, an agreement between the experimental results and the predictions is not 

sufficient for the acceptance of the specific model. Models are tested continuously to 

make sure that they are valid. Galilean relativity is modified and turned into the special 

relativity when we started measuring speeds in the order of the speed of light. Sometimes 

the modifications may occur before the tests are done. Of course, all physical laws are 

based on experimental studies. Experimental results always take precedence over theory. 

Obviously, experiments have to be done carefully and objectively without any bias. 

Uncertainties and any contributing systematic effects should be studied carefully. 

This book is written for the laboratory part of the Introductory Physics courses taken by 

freshman and sophomore classes at Bogazici University. The first part of the book gives 
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you basic information about statistics and data analysis. A brief theoretical background 

and a procedure for each experiment are given in the second part.   

Experiments are designed to give students an understanding of experimental physics 

regardless of their major study areas, and also to complement the theoretical part of the 

course. They will introduce you to the experimental methods in physics. By doing these 

experiments, you will also be seeing the application of some of the physics laws you will 

be learning in the accompanying course.  

You will learn how to use some basic instruments and interpret the results, to take and 

analyze data objectively, and to report their results. You will gain experience in data 

taking and improve your insight into the physics problems. You will be performing the 

experiments by following the procedures outlined for each experiment, which will help 

you gain confidence in experimental work. Even though the experiments are designed to 

be simple, you may have some errors due to systematical effects and so your results may 

be different from what you would expect theoretically. You will see that there is a 

difference between real-life physics and the models you are learning in class.  

You are required to use the worksheets to report your results. You should include all your 

calculations and measurements to show that you have completed the experiment fully 

and carried out the required analysis yourself.  
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DATA TAKING AND ANALYSIS 
Dimensions and Units 

A physical quantity has one type of dimension but it may have many units. The 

dimension of a quantity defines its characteristic. For example, when we say that a 

quantity has the dimension of length (L), we immediately know that it is a distance 

between two points and measured in terms of units like meter, foot, etc. This may sound 

too obvious to talk about, but dimensional analysis will help you find out if there is a 

mistake in your derivations. Both sides of an equation must have the same dimension. If 

this is not the case, you may have made an error and you must go back and recheck your 

calculations. Another use of a dimensional analysis is to determine the form of the 

empirical equations. For example, if you are trying to determine the relationship between 

the distance traveled under constant acceleration and the time involved empirically, then 

you should write the equation as 

 

where k is a dimensionless quantity and a is the acceleration. Then, rewriting this 

expression in terms of the corresponding dimensions: 

 

will give us the exponent n as 2 right away. You will be asked to perform dimensional 

analysis in most of the experiments to help you familiarize with this important part of the 

experimental work. 

Measurement and Instruments 

To be a successful experimenter, one has to work in a highly disciplined way. The 

equipment used in the experiment should be treated properly, since the quality of the data 

you will obtain will depend on the condition of the equipment used. Also, the equipment 

has a certain cost and it may be used in the next experiment. Mistreating the equipment 

may have negative effects on the result of the experiment, too.  

In addition to following the procedure for the experiment correctly and patiently, an 

experimenter should be aware of the dangers in the experiment and pay attention to the 

warnings. In some cases, eating and drinking in the laboratory may have harmful effects 

nkatd =

( ) nTLTL 2-=
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on you because food might be contaminated by the hazardous materials involved in the 

experiment, such as radioactive materials. Spilled food and drink may also cause 

malfunctions in the equipment or systematic effects in the measurements.  

Measurement is a process in which one tries to determine the amount of a specific 

quantity in terms of a pre-calibrated unit amount. This comparison is made with the help 

of an instrument. In a measurement process only the interval where the real value exists 

can be determined. Smaller interval means better precision of the instrument. The 

smallest fraction of the pre-calibrated unit amount determines the precision of the 

instrument. 

You should have a very good knowledge of the instruments you will be using in your 

measurements to achieve the best possible results from your work. Here we will explain 

how to use some of the basic instruments you will come across in this course. 

Reading analog scales: 

You will be using several different types of scales. Examples of these different types of 

scales are rulers, vernier calipers, micrometers, and instruments with pointers.  

The simplest scale is the meter stick where you can measure lengths to a millimeter. The 

precision of a ruler is usually the smallest of its divisions. 

 

Figure 1. Length measurement by a ruler 

In Figure 1, the lengths of object A and B are observed to be around 26 cm. Since we use 

a ruler with millimeter division the measurement result for the object A should be given 

as 26.0 cm and B as 26.2 cm. If you report a value more precise than a millimeter when 

you use a ruler with millimeter division, obviously you are guessing the additional 

decimal points. 

Vernier Calipers (Figure 2) are instruments designed to extend the precision of a simple 

ruler by one decimal point. When you place an object between the jaws, you may obtain 

an accurate value by combining readings from the main ruler and the scale on the frame 

0 1 2 24 25 26 27 28 

A 

B 



 13 

attached to the movable jaw. First, you record the value from the main ruler where the 

zero line on the frame points to. Then, you look for the lines on the frame and the main 

ruler that looks like the same line continuing in both scales. The number corresponding 

to this line on the frame gives you the next digit in the measurement. In Figure 2, the 

measurement is read as 1.23 cm. The precision of a vernier calipers is the smallest of its 

divisions, 0.1 mm in this case. 

     

Figure  2. Vernier Calipers. 

Micrometer (Figure 3) is similar to the vernier calipers, but it provides an even higher 

precision. Instead of a movable frame with the next decimal division, the micrometer has 

a cylindrical scale usually divided into a hundred divisions and moves along the main 

ruler like a screw by turning the handle. Again the coarse value is obtained from the main 

ruler and the more precise part of the measurement comes from the scale around the rim 

of the cylindrical part. Because of its higher precision, it is used mostly to measure the 

thickness of wires and similar things. In Figure 3, the measurement is read as 1.187 cm. 

The precision of a micrometer is the smallest of its divisions, 0.01 mm in this case.  

Here is an example for the measurement of the radius of a disk where a ruler, a vernier 

calipers, and a micrometer are used, respectively: 

  

0 

R=1.2? cm 

4 3 2 

?=3 
R=1.23cm 

1 
0 5 10 
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Measurement Precision Instrument 

  1 mm  Ruler 

  0.1 mm Vernier calipers 

  0.01 mm Micrometer 

 

 

Figure 3. Micrometer. 

Spherometer (Figure 4) is an instrument to determine very small thicknesses and the 

radius of curvature of a surface. First you should place the spherometer on a level surface 

to get a calibration reading (CR). You turn the knob at the top until all four legs touch 

the surface. When the middle leg also touches the surface, the knob will first seem to be 

free and then tight. The reading at this position will be the calibration reading (CR). Then 

you should place the spherometer on the curved surface and turn the knob until all four 

legs again touch the surface. The reading at this position will be the measurement reading 

(MR). You will read the value from the vertical scale first and then the value on the dial 

will give you the fraction of a millimeter. Then you can calculate the radius of curvature 

of the surface as: 

 

where D = |CR-MR| and A is the distance between the outside legs. 

( )mmR 123±=

( )mmR 1.01.23 ±=

( )mmR 01.014.23 ±=

D
ADR
62

2

+=
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cm 

1 0 
80 

90 
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Figure 4. Spherometer. 

Instruments with pointers usually have a scale along the path that the pointer moves. 

Mostly the scales are curved since the pointers move in a circular arc. To avoid the 

systematic errors introduced by the viewing angle, one should always read the value from 

the scale where the pointer is projected perpendicularly. You should not read the value 

by looking at the pointer and the scale sideways or at different angles. You should always 

look at the scale and the pointer perpendicularly. Usually in most instruments there is a 

mirror attached to the scale to make sure the readings are done similarly every time when 

you take a measurement (Figure 5). When you bring the scale and its image on the mirror 

on top of each other, you will be looking at the pointer and the scale perpendicularly. 

Then you can record the value that the pointer shows on the scale. Whenever you measure 

something by such an instrument, you should follow the same procedure. 

 

Figure 5. A voltmeter with a mirror scale. 
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Data Logger 

In some experiments we will be using sensors to measure some quantities like position, 

angle, angular velocity, temperature, etc. The output of these sensors will be converted 

into numbers with the help of a data acquisition instrument called DATA LOGGER 

(Figure 6).  

Data Logger is a versatile instrument that takes data using changeable sensors. When you 

plug a sensor to its receptacle at the top, it recognizes the type of the sensor. When you 

turn the data logger on with a sensor attached, it will start displaying the default mode 

for that sensor. Data taking with the data logger is very simple. You can start data taking 

by pressing the Start/Stop button (7). You may change the display mode by pressing the 

button on the right with three rectangles (6). To change the default measurement mode, 

you should press the plus or minus buttons (3 or 4). If there is more than one type of 

quantity because of the specific sensor you are using, you may select the type by pressing 

the button with a check mark (5) to turn on the editing mode and then selecting the desired 

type by using the plus and minus buttons (3 or 4). You will exit from the editing mode 

by pressing the button with the check mark (5) again. You may edit any of the default 

settings by using the editing and plus-minus buttons. For a more detailed operation of the 

instrument you should consult your instructor.  
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Figure 6. Data Logger. 
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Basics of Statistics and Data Analysis 

Here, you will have an introduction to statistical methods, such as distributions and 

averages.  

All the measurements are done for the purpose of obtaining the value for a specific 

quantity. However, the value by itself is not enough. Determining the value is half the 

experiment. The other half is determining the uncertainty. Sometimes, the whole purpose 

of an experiment may be to determine the uncertainty in the results.  

Error and uncertainty are synonymous in experimental physics even though they are two 

different concepts. Error is the deviation from the true value. Uncertainty, on the other 

hand, defines an interval where the true value is. Since we do not know the true value, 

when we say error we actually mean uncertainty. Sometimes the accepted value for a 

quantity after many experiments is assumed to be the true value. 

Sample and parent population 

When you carry out an experiment, usually you take data in a finite number of trials. This 

is our sample population. Imagine that you have infinite amount of time, money, and 

effort available for the experiment. You repeat the measurement infinite times and obtain 

a data set that has all possible outcomes of the experiment. This special sample 

population is called parent population since all possible sample populations can be 

derived from this infinite set. In principle, experiments are carried out to obtain a very 

good representation of the parent population, since the parameters that we are trying to 

measure are those that belong to the parent population. However, since we can only get 

an approximation for the parent population, values determined from the sample 

populations are the best estimates.  

Mean and Standard deviation 

Measuring a quantity usually involves statistical fluctuations around some value. 

Multiple measurements included in a sample population may have different values. 

Usually, taking an average cancels the statistical fluctuations to first degree. Hence, the 

average value or the mean value of a quantity in a sample population is a good estimate 

for that quantity. 

 å
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Even though the average value obtained from the sample population is the best estimate, 

it is still an estimate for the true value. We should have another parameter that tells us 

how close we are to the true value. The variance of the sample: 

 

gives an idea about how scattered the data are around the mean value. Variance is in fact 

a measure of the average deviation from the mean value. Since there might be negative 

and positive deviations, squares of the deviations are averaged to avoid a null result. 

Because the variance is the average of the squares, square root of variance is a better 

quantity that shows the scatter around the mean value. The square root of the variance is 

called standard deviation: 

 

However, the standard deviation calculated this way is just the standard deviation of the 

sample population. What we need is the standard deviation of the parent population. The 

best estimate for the standard deviation of the parent population can be shown to be: 

 

As the number of measurements, N, becomes large or as the sample population 

approaches parent population, standard deviation of the sample is almost equal to the 

standard deviation of the parent population.  

Distributions 

The probability of obtaining a specific value can be determined by dividing the number 

of measurements with that value to the total number of measurements in a sample 

population. Obviously, the probabilities obtained from the parent population are the best 

estimates. Total probability should be equal to 1 and probabilities should be larger as one 

gets closer to the mean value. The set of probability values associated with a population 

is called the probability distribution for that measurement. Probability distributions can 

be experimental distributions obtained from a measurement or mathematical functions. 

In physics, the most frequently used mathematical distributions are Binomial, Poisson, 
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Gaussian, and Lorentzian. Gaussian and Poisson distributions are in fact special cases of 

Binomial distribution. However, in most cases, Gaussian distribution is a good 

approximation. In fact, all distributions approach Gaussian distribution at the limit 

(Central Limit Theorem).  

Errors 

The result of an experiment done for the first time almost always turns out to be wrong 

because you are not familiar with the setup and may have systematic effects. However, 

as you continue to take data, you will gain experience in the experiment and learn how 

to reduce the systematical effects. In addition to that, increasing number of measurements 

will result in a better estimate for the mean value of the parent population. 

Errors in measurements: Statistical and Systematical errors 

As mentioned above, error is the deviation between the measured value and the true 

value. Since we do not know the true value, we cannot determine the error in this sense. 

On the other hand, uncertainty in our measurement can tell us how close we are to the 

true value. Assuming that the probability distribution for our measurement is a Gaussian 

distribution, 68% of all possible measurements can be found within one standard 

deviation of the mean value. Since most physical distributions can be approximated by a 

Gaussian, defining the standard deviation as our uncertainty for that measurement will 

be a reasonable estimate. In some cases, two-standard deviation or two-sigma interval is 

taken as the uncertainty. However, for our purposes using the standard deviation as the 

uncertainty would be more than enough. Also, from now on, whenever we use error, we 

will actually mean uncertainty. 

Errors or uncertainties can be classified into two major groups; statistical and 

systematical. 

Statistical Errors   

Statistical errors or random errors are caused by statistical fluctuations in the 

measurements. Even though some unknown phenomenon might be causing these 

fluctuations, they are mostly random in nature. If the size of the sample population is 

large enough, then there is equal number of measurements on each side of the mean at 

about similar distances. Therefore, averaging over such a large number of measurements 

will smooth the data and cancel the effect of these fluctuations. In fact, as the number of 



 22 

measurements increases, the effect of the random fluctuations on the average will 

diminish. Taking as much data as possible improves statistical uncertainty. 

Systematical Errors 

On the other hand, systematical errors are not caused by random fluctuations. One could 

not reduce systematical errors by taking more data. Systematical errors are caused by 

various reasons, such as, the miscalibration of the instruments, the incorrect application 

of the procedure, additional unknown physical effects, or anything that affects the 

quantity we are measuring. Systematic errors caused by the problems in the measuring 

instruments are also called instrumental errors. Systematical errors are reduced or 

avoided by finding and removing the cause.  

Example 1: You are trying to measure the length of a pipe. The meter stick you are going 

to use for this purpose is constructed in such a way that it is missing a millimeter from 

the beginning. Since both ends of the meter stick are covered by a piece of metal, you do 

not see that your meter stick is 1 mm short at the beginning. Every time you use this 

meter stick, your measurement is actually 1 mm longer than it should be. This will be the 

case if you repeat the measurement a few times or a few million times. This is a 

systematical error and, since it is caused by a problem in the instrument used, it is 

considered an instrumental error. Once you know the cause, that is, the shortness of your 

meter stick, you can either repeat your measurement with a proper meter stick or add 1 

mm to every single measurement you have done with that particular meter stick.  

Example 2: You might be measuring electrical current with an ammeter that shows a 

nonzero value even when it is not connected to the circuit. In a moving coil instrument 

this is possible if the zero adjustment of the pointer is not done well and the pointer 

always shows a specific value when there is no current. The error caused by this is also 

an instrumental error.  

Example 3: At CERN, the European Research Center for Nuclear and Particle Physics, 

there is a 28 km long circular tunnel underground. This tunnel was dug about 100 m 

below the surface. It was very important to point the direction of the digging underground 

with very high precision. If there were an error, instead of getting a complete circle, one 

would get a tunnel that is not coming back to the starting point exactly. One of the inputs 

for the topographical measurements was the direction towards the center of the earth. 

This could be determined in principle with a plumb bob (or a piece of metal hung on a 
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string) pointing downwards under the influence of gravity. However, when there is a 

mountain range on one side and a flat terrain on the other side (like the location of the 

CERN accelerator ring), the direction given by the plumb bob will be slightly off towards 

the mountainous side. This is a systematic effect in the measurement and since its 

existence is known, the result can be corrected for this effect.  

Once the existence and the cause of a systematic effect are known, it is possible to either 

change the procedure to avoid it or correct it. However, we may not always be fortunate 

enough to know if there is a systematic effect in our measurements. Sometimes, there 

might be unknown factors that affect our experiment. The repetition of the measurement 

under different conditions, at different locations, and with totally different procedures is 

the only way to remove the unknown systematic effects. In fact, this is one of the 

fundamentals of the scientific method. 

We should also mention the accuracy and precision of a measurement. The meaning of 

the word “accuracy” is closeness to the true value. As for “precision,” it means a 

measurement with higher resolution (more significant figures or digits). An instrument 

may be accurate but not precise or vice versa. For example, a meter stick with millimeter 

divisions may show the correct value. On the other hand, a meter stick with 0.1 mm 

division may not show the correct value if it is missing a one-millimeter piece from the 

beginning of the scale. However, if an instrument is precise, it is usually an expensive 

and well designed instrument and we expect it to be accurate. 

Reporting Errors: Significant figures and error values 

As mentioned above, determining the error in an experiment requires almost the same 

amount of work as determining the value. Sometimes, almost all the effort goes into 

determining the uncertainty in a measurement.  

Using significant figures is a crude but an effective way of reporting the errors. A simple 

definition for significant figures is the number of digits that one can get from a measuring 

instrument (but not a calculator!). For example, a digital voltmeter with a four-digit 

display can only provide voltage values with four digits. All these four digits are 

significant unless otherwise noted. On the other hand, reporting a six digit value when 

using an analog voltmeter whose smallest division corresponds to a four-digit reading 

would be wrong. One could try to estimate the reading to the fraction of the smallest 

division, but then this estimate would have a large uncertainty.  
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Significant figures are defined as following: 

• Leftmost nonzero digit is the most significant figure. 

Examples: 0.00006520 m 

 1234 m 

 41.02 m 

 126.1 m 

 4120 m 

 12000 m 

• Rightmost nonzero digit is the least significant figure if there is no decimal point. 

Examples:  1234 m 

 4120 m 

 12000 m 

• If there is a decimal point, rightmost digit is the least significant figure even if it is 

zero. 

Examples: 0.00006520 m 

 41.02 m 

 126.1 m 

Then, the number of significant figures is the number of digits between the most and the 

least significant figures including them.  

Examples: 0.00006520 m 4 significant figures 

 1234 m 4 sf 

 41.02 m 4 sf 

 126.1 m 4 sf 

 4120 m 3 sf 

 12000 m 2 sf 

 1.2000 x 104 m 5 sf 

Significant figures of the results of simple operations usually depend on the significant 

figures of the numbers entering into the arithmetic operations. Multiplication or division 

of two numbers with different numbers of significant figures should result in a value with 

a number of significant figures similar to the one with the smallest number of significant 

figure. For example, if you multiply a three-significant-figure number with a two-

significant-figure number, the result should be a two-significant-figure number. On the 

other hand, when adding or subtracting two numbers, the outcome should have the same 
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number of significant figures as the smallest of the numbers entering into the calculation. 

If the numbers have decimal points, then the result should have the number of significant 

figures equal to the smallest number of digits after the decimal point. For example, if 

three values, two with two significant figures and one with four significant figures after 

the decimal point, are added or subtracted, the result should have two significant figures 

after the decimal point. 

Example: Two different rulers are used to measure the length of a table. First, a ruler 

with 1-m length is used. The smallest division in this ruler is one millimeter. Hence, the 

result from this ruler would be 1.000 m. However, the table is slightly longer than one 

meter. A second ruler is placed after the first one. The second ruler can measure with a 

precision of one tenth of a millimeter.  Let’s assume that it gives a reading of 0.2498 m. 

To find the total length of the table we should add these two values. The result of the 

addition will be 1.2498, but it will not have the correct number of significant figures since 

one has three and the other has four significant figures after the decimal point. The result 

should have three significant figures after the decimal point. We can get the correct value 

by rounding off the number to three significant figures after the decimal point and report 

it as 1.250 m. 
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More Examples for Addition and Subtraction: 

 4 .122 

 3 .74 

 + 0 .011   

 7 .873 = 7.87  (2 digits after the decimal point) 

 

Examples for Multiplication and Division: 

 4.782 x 3.05 = 14.5851 = 14.6  (3 significant figures) 

 3.728 / 1.6781 = 2.22156 = 2.222  (4 significant figures) 

Rounding off 

Sometimes you may have more numbers than the correct number of significant figures. 

This might happen when you divide two numbers and your calculator may give you as 

many digits as it has in its display. Then you should reduce the number of digits to the 

correct number of significant figures by rounding it off. One common mistake is by 

starting from the rightmost digit and repeatedly rounding off until you reach the correct 

number of significant figures. However, all the extra digits above and beyond the number 

of correct significant figures have no significance. Usually you should keep one extra 

digit in your calculations and then round this extra digit at the end. You should just 

discard the extra digits other than the one next to the least significant figure. The 

reasoning behind the rounding off process is to bring the value to the correct number of 

significant figures without adding or subtracting an amount in a statistical sense. To 

achieve this you should follow the procedure outlined below: 

• If the number on the right is less than 5, discard it.  

• If it is more than 5, increase the number on its left by one.  

• If the number is exactly five, then you should look at the number on its left.  

- If the number on its left is even then again discard it.  

- If the number on the left of 5 is odd, then you should increase it by one.  

This special treatment in the case of 5 is because there are four possibilities below and 

above five and adding five to any of them will introduce a bias towards that side. Hence, 

grouping the number on the left into even and odd numbers makes sure that this ninth 

case is divided into exactly two subsets; five even and five odd numbers. We count zero 
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in this case since it is in the significant part. We do not count zero on the right because it 

is not significant.  

Example: Rounding off 2.4456789 to three significant figures by starting from all 

the way to the right, namely starting from the number 9, and repeatedly rounding off until 

three significant figures are left would result in 2.45 but this would be wrong. The correct 

way of doing this is first dropping all the non-significant figures except one and then 

rounding it off, that is, after truncation 2.445 is rounded off to 2.44. 

More Examples: Round off the given numbers to 4 significant figures: 

 43.37468 = 43.37 = 43.4 

 43.34468 = 43.34 = 43.3 

 43.35468 = 43.35 = 43.4 

 43.45568 = 43.45 = 43.4 

If we determine the standard deviation for a specific value, then we can use that as the 

uncertainty since it gives us a better estimate. In this case, we should still pay attention 

to the number of significant figures since reporting extra digits is meaningless. For 

example if you have the average and the standard deviation as 2.567 and 0.1, 

respectively, then it would be appropriate to report your result as 2.6±0.1. 

Weighted Averages 

Sometimes we may measure the same quantity in different sessions. As a result we will 

have different sets of values and uncertainties. By combining all these sets we may 

achieve a better result with a smaller uncertainty. To calculate the overall average and 

standard deviation, we can assign weight to each value with the corresponding variance 

and then calculate the weighted average.  

 

Similarly we can also calculate the overall standard deviation. 
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Error Propagation 

If you are measuring a single quantity in an experiment, you can determine the final value 

by calculating the average and the standard deviation. However, this may not be the case 

in some experiments. You may be measuring more than one quantity and combining all 

these quantities to get another quantity. For example, you may be measuring x and y and 

by combining these to obtain a third quantity z: 

  or  

You could calculate z for every single measurement and find its average and standard 

deviation. However, a better and more efficient way of doing it is to use the average 

values of x and y to calculate the average value of z. In order to determine the variance 

of z, we have to use the square of the differential of z: 

 

Variance would be simply the sum of the squares of both sides over the whole sample 

set divided by the number of data points N (or N-1 for the parent population). Then, the 

general expression for determining the variance of the calculated quantity as a function 

of the measured quantities would be: 

  for k number of measured quantities. 

Applying this expression to specific cases would give us the corresponding error 

propagation rule. Some special cases are listed below: 

  for  

  for  or  or  
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  for  

  for  

  for  

  for  

Multivariable measurements: Fitting procedures 

When you are measuring a single quantity or several quantities and then calculating the 

final quantity using the measured values, all the measurements involve unrelated 

quantities. There are no relationships between them other than the calculated and 

measured quantities. However, in some cases you may have to set one or more quantities 

and measure another quantity determined by the independent variables. This is the case 

when you have a function relating some quantities to each other. For example, the 

simplest function would be the linear relationship: 

 

where a is called the slope and b the y-intercept. Since we are setting the value of the 

independent variable x, we assume its uncertainty to be negligible compared to the 

dependent variable y. Of course, we should be able to determine the uncertainty in y. 

From such an experiment, usually we have to determine the parameters that define the 

function; a and b. This can be done by fitting the data to a straight line. 

The least squares (or maximum likelihood, or chi-square minimization) method would 

provide us with the best possible estimates. However, this method involves lengthy 

calculations and we will not be using it in this course.  

We will be using a graphical method that will give us the parameters that we are looking 

for. It is not as precise as the least squares method and does not give us the uncertainties 

in the parameters, but it provides answers in a short time that is available to you.  

Graphical method is only good for linear cases. However, there are some exceptions to 

this either by transforming the functions to make them linear or plotting the data on a 
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semi-log or log-log or polar graph paper (Figure 7). , , , , are 

some examples for nonlinear functions that can be transformed to linear expressions. 

type expressions can be linearized by substituting  with a simple x: 

 where . Power functions can be linearized by 

taking the logarithm of the function: becomes  and then 

through , , and  transformation it becomes . 

Exponential functions can be transformed similar to the power functions by taking the 

natural logarithm:  becomes  and through  and 

 transformation it becomes .  

Before attempting to obtain the parameters that we are looking for, we have to plot the 

data on a graph paper. As long as we have linearly dependent quantities or transformed 

quantities as explained above, we can use regular graph paper.  

       

Figure 7: Different types of graph papers: linear, semi-log, log-log, and polar. 

You should use as much area of the graph paper as possible when you plot your data. 

Your graph should not be squeezed to a corner with lots of empty space. To do this, first 

you should determine the minimum and maximum values for each variable, x and y, then 

choose a proper scale value. For example, if you have values ranging from 3 to 110 and 

your graph paper is 23 centimeters long, then you should choose a scale factor of 1 cm 

to 5 units of your variable and label your axis from 0 to 115 and marking each big square 

(usually linear graph papers prepared in cm and millimeter divisions) at increasing 

multiples of 5. You should choose the other axis in a similar way. When you select a 

scale factor you should select a factor that is easy to divide by, like 1, 2, 4, 5, 10, etc. 

Usually scale factors like 3, 4.5, 7.9 etc., are bad choices. Both axis may have different 

scale factors and may start from a nonzero value. You should clearly label each axis and 

write down the scale factors. Then you should mark the position corresponding to each 

data pair with a cross or similar symbols. Usually you should also include the 

uncertainties as vertical bars above and below the data point whose lengths are 

r/1 2/1 r 5axy = bxaey -=

nr/1 nr/1

BxAyrBAy n +=®+= / nrx /1=
naxy = xnay logloglog +=

yy log=¢ aa log=¢ xx log=¢ xnay ¢+¢=¢
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determined according to the scale factor. Once you finish marking all your data pairs, 

then you should try to pass a straight line through all the data points. Usually, this may 

not be possible since the data points may not fall into a straight line. However, since you 

know that the relationship is linear there should be a straight line that passes through the 

data points even though not all of them fall on a line. You should make sure that the 

straight line passes through the data points in a balanced way. An equal number of data 

points should be below and above the straight line. Then, by picking two points on the 

line as far apart from each other as possible, you should draw parallel lines to the axes, 

forming a triangle (Figure 8). The slope is the slope of the straight line. You can calculate 

the slope as: 

 

and read the y-intercept from the graph by finding the point where the straight line crosses 

the y-axis. You can estimate the uncertainties of the slope and intercept by finding 

different straight lines that still pass through all the data points in an acceptable manner. 

The minimum and maximum values obtained from these different trials would give us 

an idea about the uncertainties. However, obtaining the parameters will be sufficient in 

this course. 

 

Figure 8: Determining the slope and y-intercept. 

Special graph papers, like semi-log and log-log graph papers, are used when you have 

relationships that can be transformed into linear relationships by taking the base-10 
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logarithm of both sides. Semi-log graph papers are used if one side of the expression 

contains powers of ten or single exponential function resulting in a linear variable when 

you take the base-10 logarithm of both sides.  

Logarithmic graph papers are used when you prefer to use the measured values directly 

without taking the logarithms and still obtaining a linear graph. Each logarithmic axis is 

divided in such a way that when you use the divisions marked on the paper it will have 

the same effect as if you first took the logarithm and then plotted on a regular graph 

paper. Logarithmic graph papers are divided linearly into decades and in each decade is 

divided logarithmically. There is no zero value in a logarithmic axis. You should plot 

your data by choosing appropriate scale factors for each axis and then mark the data 

points directly without taking the logarithms. You should again draw a straight line that 

will pass through all the data points in a balanced way. The slope of the line would give 

us the exponent in the relationship. For example, a relationship like  would be 

linearized as . If you plot this on a regular graph paper, the slope 

will be given by  where you will read the 

logarithms directly from the graph. On the other hand, when you plot your data on a log-

log paper, you will be using the measured values directly. When you picked the two 

points from the straight line that fits the data points best, the slope should be calculated 

by  where you will calculate the logarithms using 

the values read from the graph. y-intercept would be directly the value where the straight 

line crosses the vertical axis at . 
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Figure 9: Determining the slope and y-intercept. 

slope point 1: ( 2.0 ; 2.6 ) and slope point 2 : (18.0 ; 7.0 ) 

  and  y-intercept = 2.0. 4507.0
9542.0
4301.0
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Reports 

Obviously, doing an experiment and getting some results are not enough. The results of 

the experiment should be published so that others working on the same problem will 

know your results and use them in their calculations or compare with their results. The 

reports should have all the details so that another experimenter could repeat your 

measurements and get the same results. However, in an introductory teaching lab there 

is no need for such extensive reports since the experiments you will be doing are well 

established and time is limited. You have to include enough details to convince your lab 

instructor that you have performed the experiment appropriately and analyzed it 

correctly. The results of your analysis, including the uncertainties in the measurements, 

should be clearly expressed. The comparisons with the accepted values may also be 

included if possible. 
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Part II. EXPERIMENTS 
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1. STATIC EQUILIBRIUM OF A RIGID 
BODY 

 
OBJECTIVE : To study the equilibrium conditions of a body when there are 
forces applied on it. 
THEORY : A rigid body is in equilibrium when the total force and the 
torque acting on it are equal to zero: 

,  

or if we write these in component form: 

 , ,   

 , , . 

PROCEDURE : 

 
P a r t  1 :  Place a piece of paper on the movable disc and replace the center 
pin. Insert four pegs, by punching through the paper, into four different holes in the disc, 
and place the strings over the pulleys. 
Attach known masses to the free ends of three of the cords. Adjust the angular position 
and the mass suspended from the fourth cord until the disc is in equilibrium when the pin 
is removed. With a pencil, mark the positions of the strings and write the magnitude of 
each force. Indicate the direction of the forces and determine whether the forces are 
balanced. Choose any point on the data paper and compute the algebraic sum of torques 
about the chosen point. 

å = 0F å = 0t

å = 0xF å = 0yF å = 0zF

å = 0xt å = 0yt å = 0zt
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P a r t  2 :  Repeat the whole procedure by suspending two known and the two 
unknown masses given to you. 
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STATIC EQUILIBRIUM OF A RIGID BODY 
 
Name & Surname : Experiment # : 
Section : Date : 
 

 
DATA: “TURN IN YOUR DATA SHEETS OTHERWISE YOUR LAB 

REPORT WILL NOT BE EVALUATED” 
P A R T  1 :   

Description / Notation Value & Unit  

MASS - 1: 

Mass on the holder m1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Perpendicular Distance  
to the axis of rotation d1^ = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Angle between the  
x-axis and the Force q1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Direction of  
the torque: Clockwise   Counterclockwise 

 
 

MASS - 2: 

Mass on the holder m2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Perpendicular Distance  
to the axis of rotation d2^ = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Angle between the  
x-axis and the Force q2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Direction of  
the torque: Clockwise   Counterclockwise 
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MASS - 3: 

Mass on the holder m3 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Perpendicular Distance  
to the axis of rotation d3^ = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Angle between the  
x-axis and the Force q3 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Direction of  
the torque: Clockwise   Counterclockwise 

 

MASS - 4: 

Mass on the holder m4 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Perpendicular Distance  
to the axis of rotation d4^ = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Angle between the  
x-axis and the Force q4 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Direction of  
the torque: Clockwise   Counterclockwise 

 

P A R T  2 :  
  
Description / Symbol  Value & Unit 

UNKNOWN MASS - 1: 

Mass on the holder m1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Perpendicular Distance  
to the axis of rotation d1^ = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Angle between the  
x-axis and the Force q1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Direction of  
the torque: Clockwise   Counterclockwise 
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UNKNOWN MASS - 2: 

Mass on the holder m2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Perpendicular Distance  
to the axis of rotation d2^ = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Angle between the  
x-axis and the Force q2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Direction of  
the torque: Clockwise   Counterclockwise 

 

 
MASS - 3: 

Mass on the holder m3 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Perpendicular Distance  
to the axis of rotation d3^ = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Angle between the  
x-axis and the Force q3 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Direction of  
the torque: Clockwise   Counterclockwise 

 
 

MASS - 4: 

Mass on the holder m4 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Perpendicular Distance  
to the axis of rotation d4^ = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Angle between the  
x-axis and the Force q4 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Direction of  
the torque: Clockwise   Counterclockwise 
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CALCULATIONS : 
 

F o r  P A R T  1 :  

 
SFx : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 
 
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 
 
SFy : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 
 
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 
 

Stz : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 
 
 
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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F o r  P A R T  2 :  

 
SFx : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 
 
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 
 
SFy : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 
 
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 
 

Stz : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 
 
 
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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R E S U L T S :  

Use Fx or Fy and tz to solve for m1 and m2: 

 

 
m1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 
 

 
 

m2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 
 

 
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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2. EMPIRICAL EQUATIONS 
 

OBJECTIVE : To study a nonlinear phenomenon and determine the parameters 
related to the motion through a linear representation. 
THEORY : Physics laws are based on experiments. We may obtain some 
relationships starting from the first principles or established physics laws through 
physical and mathematical reasoning. These relationships are accepted as valid laws if 
they are shown to be valid by all sorts of experiments. However, in some cases we may 
not know the underlying physical principle. We may have only our observation of the 
phenomenon. From the observation we may try to develop a relationship between the 
quantities that are being measured. Of course, if there are more than two quantities 
involved, we should set all the quantities to a constant value except two of them, and then 
measure one of these two by varying the value of the other quantity. 
For example, in the periodic motion of metal rings placed on a knife edge fixed on the 
wall, there are several quantities; the radius, thickness of the rings, and the period of the 
oscillations are some of the quantities that we can think of. If we want to determine the 
relationship between the radius and the period of the oscillations, we should have rings 
made of the same material and thickness. Then we should let the rings oscillate and 
measure the period as a function of the radius, making sure that the initial amplitudes are 
the same. Once we obtain the data we can try different relationships between the period 
and the radius; linear, quadratic, cubic, etc. However, this would be a time consuming 
process. Instead we assume that the relationship is in the form of  , which is not 
linear. By taking the logarithm (base-10) of both sides, we get . 
This is a linear expression whose slope and y-intercept can be easily obtained through 
graphical analysis. We can either plot the data on a log-log graph paper or the logarithm 
of the values on a regular graph paper. Then we can determine the exponent n from the 
slope of the straight line.  
Establishing physics laws in this way produces expressions that are already validated by 
the experiment. Of course, we should still try to derive the same expression through 
logical reasoning and starting from the known and well established physics laws.  
APPARATUS : A set of five metal rings, vernier calipers, stop watch, meter 
stick,  
PROCEDURE : Each one of the five metal rings is suspended successively from 
a knife edge. The rings are made to oscillate from side to side. The period of oscillations 
is determined by taking average over at least 10 oscillations. The mean diameter of each 
ring is also determined. After obtaining the data, you should plot them on a log-log graph 
paper and the logarithm of the values on a regular graph paper. Determine the slope and 
intercept from both plots and compare them. Report the average of both values. 

narT =
rnaT logloglog +=
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EMPIRICAL EQUATIONS 
 

Name & Surname : Experiment # : 
Section : Date : 
 
 
 
DATA: 

Description 
Symbol 
(unit) 

R I N G  N U M B E R  
- 1 - - 2 - - 3 - - 4 - - 5 - 

Inner Diameter  
(first measurement) 

Di1   (          ) 
     

Inner Diameter  
(second measurement) 

Di2    (          ) 
     

Average Inner  
Diameter 

Diave (          ) 
     

Outer Diameter  
(first measurement) 

Do1  (          ) 
     

Outer Diameter  
(second measurement) 

Do2  (          ) 
     

Average Outer 
Diameter 

Doave(          ) 
     

# of Periods: t       (          )      
 
 
 
 
 
CALCULATIONS: 

Description Symbol (unit) 
R I N G  N U M B E R  

- 1 - - 2 - - 3 - - 4 - - 5 - 
Average 
Diameter 

Dave  (          )      

One Period T      (          )      

Logarithm of 
Dave 

Log Dave      

Logarithm of T Log T      
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1) Use Log D & Log T data set: 
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A) From the graph, choose two SLOPE POINTS other than data points, 

 
 SP1  : (  ;  ) 
 
 SP2  : (  ;  ) 

 

B) Calculate “n” using SP1 and SP2, 

n1  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

C) By reading the y-intercept of the line from the graph, determine A,  

 

Intercept1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

A1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

D (for T=1 sec) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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2) Use D & T data set: 
 

 

 

 
A) From the graph, choose two SLOPE POINTS other than data points, 
 
 
 SP1  : (  ;  ) 
 
 SP2  : (  ;  ) 
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B) Calculate “n” using SP1 and SP2  
 (Show your calculations clearly) 

 

n2  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 
 
C) By reading the y-intercept of the line from the graph, determine A,  
 (Show your calculations clearly) 

 

Intercept2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

A2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

D (for T=1 sec) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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RESULTS: 
 
Symbol Calculations Result  Dimension 

nave  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . .  .  . . . . . . .  

 

Aave = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . .  .  . . . . . . .  

 
QUESTION : 

  

1. Can we use this set of rings to determine the gravitational acceleration? Explain. 
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3. THE PHYSICAL PENDULUM 
 

OBJECTIVE : To study the properties of the physical pendulum and to use the 
physical pendulum to determine the acceleration due to gravity. 

THEORY : 

 
Figure 1.  Physical pendulum. 

In simple pendulum we determined the expression for the period by solving the force 
equation with the assumption that the mass hanging at the end of the string is a point 
mass. Since we used a small ball our assumption was acceptable. When we have an object 
that is much larger and can not be treated as a point particle, we can still determine the 
period of oscillations if we hang this object from any point and let it oscillate. In this case 
we should write the torque equation and solve it. Of course we should know the moment 
of inertia of the object with respect to the point that the object is hung. Then the period 
of oscillations will be 

  (1) 

where I is the moment of inertia about the axis of rotation or the point that the object is 
hung and h is the distance between this point and its center of mass. The moment of 
inertia about any given point can be expressed in terms of the moment of inertia about 
the center of mass using the parallel axis theorem: 

  (2) 

and ICM can be written in terms of the radius of gyration k: 

  (3) 

Then combining these equations we can express the period as 

  (4) 

This is equivalent to a simple pendulum with a length: 

  (5) 

This simple pendulum is called “the equivalent simple pendulum” to the physical 
pendulum.  
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From the figure above we see that 
  (6) 

and plugging this into the expression for the period results in 

 . (7) 

Plotting the period as a function of S will give us the graph in Figure 2. As you can see 
from the graph, there are four possible points for a specific period value that we can hang 
the pendulum. These four points collapse down to two for the minimum period. Radius 
of gyration is the distance at which the physical pendulum is hung to get the minimum 
period. We can determine the radius of gyration by measuring the period while varying 
the distance between the center of mass and the point that the pendulum is hung. Then 
we can simply read the distance corresponding to the minimum period from the graph. 
Radius of gyration is the distance between this point and the center of mass.  

 
Figure 2. Plot of the period as a function of S (Equation (7)). 

 
From the plot we can also see that the period of oscillations become infinite if we hang 
the object from its center of mass.  
Because of the symmetry around the center of mass we can limit ourselves to one side of 
the center of mass. Equating the expressions for the two points that result in the same 
period: 

 , (8) 

after simplifying we get: 
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 , (9) 

and solving for k 

  (10) 

Hence, the period expression given in Equation (7) becomes 

 

and similarly the length of the equivalent simple pendulum (Equation (5)) becomes 

 

 
APPARATUS : Physical pendulum, meter stick, stopwatch 

PROCEDURE : 

• Support the pendulum on the knife edge at the hole nearest to one end of the bar. 
Observe the time for 10 full oscillations and determine the period. In the same 
way determine the period about an axis through each and every hole in the bar. 

• Remove the pendulum from its support and measure the distance of the various 
points of suspension from one end of the bar. 

• Record these values of S as a function of the corresponding values of period T. 

• Plot the values of S versus period T and draw a horizontal line corresponding to 
a period T. Determine the radius of gyration, k, from the graph. 

• Determine the length of the equivalent simple pendulum and calculate the 
gravitational acceleration using this value. Compare your result with the known 
value of g. 
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THE PHYSICAL PENDULUM 
 

Name & Surname : Experiment # : 
Section : Date : 
 

 

DATA: 
 
Description / Symbol Value & Unit  
 

Distance from one end  
to the center  D = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
of the pendulum  

 

Mass of M = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
of the pendulum  

 

Acceleration 
due to gravity gTV = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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Distance from one end of 
the pendulum to the 

suspension point 
S (             ) 

 
Time for 10 Period 

t (               ) 

 
One Period 

T (                ) 
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Plot S versus T: 
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Read from the Graph: 

Description / Symbol Value & Unit  
 

Period (any chosen) T = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Minimum Period To = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Distance from the center to the 
first suspension point for T, h1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Distance from the center to the 
second suspension point for T, h2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

For minimum Period: ho = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Radius of Gyration k = ho = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

CALCULATIONS and RESULT: 
 
Description Symbol Calculations (show each step) Result 

Radius of Gyration k =  = . . . . . . . . . . . . . . . . . . . . . . . . . .         . . . . . . . . . . . . . 

 

Length of the Equivalent  
Simple Pendulum L = . . . . . . . . . . . . . . . . . . . . . . . . . . .         . . . . . . . . . . . . 

.

21hh
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Description/Symbol Calculations (show each step) Result 

Moment of Inertia  
about the CM Io = ICM = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 
Moment of Inertia  
Corresponding  I(for T) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
to h1 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 

Moment of Inertia  
Corresponding  I(for T) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
to h2 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 

Acceleration  
due to Gravity gEV = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

% Error for g = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

Dimensional analysis for the Radius of Gyration, k  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

Dimensional analysis for the moment of Inertia, I: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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4. SIMPLE HARMONIC MOTION 
 

OBJECTIVE : To investigate the resultant of two forces, one constant, the other 
depending on displacement from equilibrium (restoring force). 

THEORY : 

 
The system shown in the figure above will be exhibiting a periodic motion due to the 
variable restoring force in the spring. If we write the equation of motion:  

 
 

then, the solution of this equation will be: 

 

whose period of oscillation is given by 

. 

Derivative of the position with respect to time will yield the velocity as a function of 
time and the second derivative will give us the acceleration: 

 

 

Notice that when the magnitude of the velocity reaches its maximum the acceleration 
becomes zero and vice versa. 
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APPARATUS : Car and track system, position sensor, data logger, spring, 
hanger and mass set. 

PROCEDURE : 

• Disconnect car from the spring and compensate for friction. 

• Fix the spring to the car; locate the point where no force is acting on the car, 
keeping the car stationary, and place mass m on the holder.  

• Place the position sensor at least 30 cm away from the car. Start the data logger 
at the desired rate (suggested value is 10 per second) and let the car go. The car 
first accelerates (mg > kx), attains its maximum velocity where mg = kx, then 
decelerates (mg < kx) and finally stops to come back. 

• Using the data in the data logger’s memory, calculate the average velocity for 
each interval. 

• Plot the average velocity versus time and the total displacement versus time 
curves. 

• From the velocity versus time graph, determine the maximum velocity which 
corresponds to zero acceleration and the corresponding time t and the period. 

• From the displacement versus time graph, determine the maximum displacement 
xeq 

• Calculate other system parameters. 
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SIMPLE HARMONIC MOTION 
 

Name & Surname : Experiment # : 
Section : Date : 
 
 
 
 
DATA: 
  
Description / Symbol Value & Unit 

Mass on the holder 
 m = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

Initial distance 
of the Car x0  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Number of the  
Cylinders in the Car  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Data Taking 
Rate = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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Number of 
Intervals 

t  
(        ) 

x  
(          ) 

Dx 
(        ) 

vave = Dx / Dt 
(             ) 
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CALCULATIONS and RESULT: 
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Read from the Graphs: 
  
Description Symbol Value & Unit  

Maximum velocity vmax = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Time Corresponding to 
to the max. Velocity t = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Equilibrium xeq. = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Displacement  

 
 
Calculate: 
 
Description / Symbol Calculations Result Dimension 
 (show each step) 

Spring Constant k = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 

Period of  
Oscillation T = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 

Frequency of  
Oscillation w = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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Description / Symbol Calculations Result Dimension 
 (show each step) 

System 
Parameter A = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 

Maximum 
Displacement xmax = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 

Maximum 
Acceleration amax = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 

Total 
Mass mtotal = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 

Mass  
of the Car mcar = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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QUESTIONS  : 
1) What would the amplitude of the simple harmonic motion be if the mass 

on the hanger were doubled? 
2) Calculate the acceleration of the car at time t=T/4. 
3) If there were 10% error in determining the distance between successive 

intervals, what would the error in the tenth average velocity be? 
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5. ANGULAR HARMONIC MOTION 
 

OBJECTIVE : To study angular oscillatory motion and the dependence of the 
period of oscillation on the moment of inertia of the system. 

THEORY :  

 
We can study the angular harmonic motion in a torsional system where an object is 
attached to a straight rod and rotated to some angle initially. This initial rotation causes 
some torsion in the wire thereby producing a restoring torque. Resulting torque equation 
is similar to the force equations that we obtained for the simple harmonic oscillation; 
hence it has the same type of solution for the period: 

 

Below are the formulas to calculate the moment of inertia of uniform disk and ring 
masses: 

 
APPARATUS : Torsion pendulum, disk and ring masses, meter stick, 
stopwatch. 
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PROCEDURE : 
P a r t  1 :  Measure the time, t, for the disc to complete 50 oscillations, and 
determine the mean period of oscillation T. 
Measure the diameter of the disk at two different positions, compute the mean diameter 
and mean radius R for the disc. By using this radius, compute the moment of inertia of 
the disc and the torsion constant of the rod. 
P a r t  2 :  Place the ring whose moment of inertia is unknown, on the disc, 
measure the time to complete 50 oscillations, and determine the mean period of 
oscillation T. 
Compute the sum of the moment of inertias of the disc and the ring. Evaluate the moment 
of inertia of the ring. Compute the theoretical value of moment of inertia and determine 
the percentage error. 
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ANGULAR HARMONIC MOTION 
 

Name & Surname : Experiment # : 
Section : Date : 

 

DATA: 
 

P a r t  1 :  M o m e n t  o f  I n e r t i a  o f  t h e  D i s k  
 

Description / Symbol Value & Unit  

Time for  
50 oscillations t = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 

Time for  
one oscillation T = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
 

Diameter of the disc  
1st measurement Ddisc1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
 

Diameter of the disc  
2nd measurement Ddisc2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
 

Average diameter  
of the disc Ddisc = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
 

Radius of the disc  Rdisc = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 
 

Mass of the disc Mdisc = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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P a r t  2 :  M o m e n t  o f  I n e r t i a  o f  t h e   
R i n g  &  t h e  D i s c  

 
  
Description / Symbol Value & Unit 

Time for  
50 oscillations t* = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Time for  
one oscillation T* = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Outer Diameter of  
the ring Dout-1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1st measurement   

Outer Diameter of  
the ring Dout-2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2nd measurement 

Average outer diameter 
of the ring Douter = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Outer Radius of  
the ring Router = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Inner Diameter of  
the ring Dinner-1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1st measurement 

Inner Diameter of  
the ring Dinner-2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2nd measurement  

 
Average inner diameter 
of the ring Dinner = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Inner Radius of  
the ring Rinner = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Mass of the  
ring Mring = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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CALCULATIONS: 
 

Description Calculations (show each step) Result 

Moment of Inertia 
of the system Idisc = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

Torsion constant  
of the rod k = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

Total Moment of Inertia of the 
disk and the ring Itotal = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

Moment of Inertia 
of the ring Iring-EV = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

Theoretical value of the Moment of 
Inertia of the ring Iring-TV= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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% Error for the Moment of Inertia of the ring:  . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

 

Dimensional Analysis for the Torsion Constant, k: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

 

Dimensional Analysis for the Moment of Inertia, I: . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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QUESTIONS : 
1) What would the uncertainty in determining the torsion constant 

k  be, if the period and the radius of the ring are determined with 
1% uncertainties? 

2) How would the period of the oscillations be affected if you place 
another object on the disc while it is oscillating? 
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6. STANDING WAVES IN A STRING 
 

OBJECTIVE : To study the standing waves in a cord, and to verify the equation 
for the velocity of a wave on a string. 

THEORY :  

 
When a string fixed on both ends and under tension is excited on one end, there will be 
waves traveling along the string. If we continue to excite the string, the waves reflected 
from the other end will interfere with the waves traveling in the forward direction. If the 
length of the string is exactly equal to the integer multiples of the half wavelengths, there 
will be standing waves along the string. The points where the string is motionless are 
called nodes and the distance between successive nodes will be equal to the half 
wavelength. Speed and the wavelength of the waves traveling along the string depend on 
the tension and the mass per unit length of the string: 

 

 

A Plot of the tension versus the square of the frequency data pairs that produce standing 
waves should follow a straight line whose slope is equal to the mass per unit length times 
the square of the wavelength. Tension on the string is provided by the masses placed on 
the hanger on the other end. 
APPARATUS : String vibrator and its variable frequency power supply, hanger 
and mass set, string. 

PROCEDURE : 

• Length of the cord between the vibration generator and the pulley is kept constant. 
Place a mass on the mass holder and set the vibration generator in motion. 
Arrange the frequency of the vibration generator until standing waves are clearly 
observed. 

• Determine the number of nodes and the wavelengths. Record the frequency value 
along with the corresponding mass on the mass holder. 

• By keeping the wavelength constant, change the mass and read the 
corresponding frequency for clearly observed standing waves for 4 more times. 

22 fT µl=

m 

L 

l/2 node 

 l
µ

fTv =÷÷
ø

ö
çç
è

æ
=

2
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• Plot tension, T, versus f 2 and determine the slope. Calculate the mass per unit 
length for the cord. 
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STANDING WAVES IN A STRING 
 

Name & Surname : Experiment # : 
Section : Date : 
 

 
DATA: 
 
  
Description / Symbol Value & Unit 

Mass per unit length 
of the Cord µTV = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Length of the Cord L = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Acceleration  
due to gravity g = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Mass, 
m (       ) 

# of l / 2 
(keep constant) 

l (         ) 
(keep constant) 

Frequency, 
f  (          ) 

f2 
(          ) 

Tension 
T = m.g 

(             ) 
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CALCULATIONS: 
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From the graph, choose two SLOPE POINTS other than data points, 
 

  SP1  : (  ;  ) 
 

  SP2  : (  ;  ) 
 

Calculate: 

 

SLOPE = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

RESULTS: 
 
Description / Symbol Calculations (show each step) Result 

 
Mass per unit length  
of the Cord µEV = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

% Error for µ = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . .  
 

 

Dimensional analysis for  µ : . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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7. SPECIFIC HEAT OF METALS AND
 HEAT OF FUSION OF ICE 

 

OBJECTIVE : To measure the specific heat of a metal and to determine the 
unknown mass of an ice block, through the method of mixtures. 

THEORY :  
It is experimentally shown that the heat absorbed by an object is directly proportional to 
the change in the temperature and the mass of the object. Proportionality constant is the 
specific heat of the material that the object is made of: 

 

If you use the SI unit system, the specific heat is defined as the amount of heat absorbed 
to increase the temperature by one centigrade for a 1 kg object. Unit for the heat is the 
same as Joule but in these calculations mostly calories are used (1 cal = 4.187 Joules). 
When you place two objects at different temperatures in close contact, they will exchange 
heat until the temperatures are equal. The heat gained by one object is equal to the heat 
given by the other object since the energy is conserved. For example, if you have a 
calorimeter with a known mass mc and specific heat cc filled with water with mass mw at 
a known temperature T1. When you place a specimen into the water inside the calorimeter 
at a higher temperature T2, assuming that there is no heat lost to the surroundings, we can 
write the following heat exchange equation: 

 

where T3 is the final temperature of the mixture when it comes into equilibrium. 
These expressions are valid unless there is no phase change. If there is a phase change 
involved, then the corresponding heat necessary for the phase change should be added 
into the appropriate side of the equation. For example, if we add a block of ice with a 
mass mi at a temperature of Ti into the calorimeter mentioned in the previous paragraph, 
we should write the heat exchange as follows: 

 

since the heat of fusion, Lf, depends only on the mass. Temperature is constant during 
the phase change and the final temperature is T4. 
APPARATUS : Calorimeter, stirrer, thermometer, heater, water, specimen, ice, 
temperature sensor, data logger. 

TmcQ D=

( ) ( ) ( )131332 TTcmTTcmTTcm wwccss -+-=-

( ) ( ) ( ) ( ) ( )4343434 00 TTcmTTcmTTcmTcmLmTcm sswwccwifiiii -+-+-=-++-
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PROCEDURE: 
 

Calorimeter = Inner vessel of calorimeter + stirrer 
P a r t  1 :  Determine the mass of the calorimeter (inner vessel of the 
calorimeter and the stirrer), and the mass of the specimen and its container.  
Put your sample in its container into a water boiler one-third full and heat it until the 
temperature is 95oC.  
Add 80g of water at room temperature to the calorimeter. Measure the initial temperature 
of calorimeter and water, Ti-cal and Ti-w . Quickly pour the hot sample into the 
calorimeter and observe the temperature rise of the water and calorimeter combination. 
Note the highest temperature as equilibrium temperature, T1e. Before calculating the 
specific heat of given metal, continue with Part 2. 
 
P a r t  2 :  Get an ice block and drop it into the calorimeter immediately and 
keep the system closed and well mixed. The temperature will first drop, then it will stay 
stationary as the ice melts, and finally, it will decrease to the equilibrium temperature 
T2e. Record this temperature. 

Calculate the specific heat of metal and the mass of ice block. 
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SPECIFIC HEAT OF METALS AND HEAT 
OF FUSION OF ICE 
 

Name & Surname : Experiment # : 
Section : Date : 

 

DATA: 
 
Description / Symbol Value & Unit  

Specific Heat 
of Water cw = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

Specific Heat of the  
Calorimeter ccal = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Specific Heat 
of Ice cice = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Heat of Fusion  
of Ice Lf = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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P A R T  1  –  S P E C I F I C  H E A T  O F  M E T A L S  
 
 

Description / Symbol Value & Unit 

Mass of the  
Calorimeter mcal = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Mass of  
Water mw = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Mass of the Specimen  
+ container ms+con = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Mass of the  
Specimen ms = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Initial Temperature of the  
Calorimeter Ti-cal = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Initial Temperature 
of Water Ti-w = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Initial Temperature of the 
Specimen Ti-s = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Equilibrium  
Temperature T1e = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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PART 2 – HEAT OF FUSION OF ICE 
 
 

Description / Symbol Value & Unit 

Initial Temperature 
of Ice Ti-ice = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Initial Temperature of the  
Calorimeter, Water and the 
Specimen Ti-cal + contents = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equilibrium  
Temperature T2e = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

CALCULATIONS :  

For PART-1:  ****** NO NUMERICAL EVALUATION ****** 

Heat Lost: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Heat Gained: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Specific Heat of the Specimen: cs = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

NO NUMERICAL EVALUATION 
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For PART-2: (NO NUMERICAL EVALUATION) 
 

Heat Lost: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Heat Gained: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

Mass of Ice:  mice-EV = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

NO NUMERICAL EVALUATION 
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RESULTS: 
 
Description Calculations (show each step) Result 

Specific Heat  
of the Specimen cs = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Total Mass mtotal = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Experimental Value of  
the Mass of Ice, mice-EV = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Measured Value of  
the Mass of Ice, mice-MV = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

% Error for the Mass of Ice:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 

 

Dimensional analysis for the Specific Heat:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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QUESTIONS : 

1) The calorimeter used in this experiment does not have perfect 
insulation and some heat is lost to the surroundings. Estimate the 
effect of 10% heat loss (10% of the total heat exchanged) on the 
specific heat value you determine for the specimen. 

2) In the heat exchange equations, the thermal effect of the 
thermometer is neglected; discuss the thermal effect of the 
thermometer or the thermal sensor in the results. 
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8. THE RATIO OF HEAT CAPACITIES OF 
AIR,  g = CP/CV 

 

OBJECTIVE : To determine the ratio of the specific heats of air, Cp / Cv. 
THEORY : We can determine the ratio of the heat capacities air in a glass 
vessel by observing the oscillation of a steel ball inside the glass tube attached to the top 
of the glass bottle. 

 
The pressure inside the bottle is given by:  

 

where P0 is the atmospheric pressure and M is the mass of the steel ball. This is the case 
when the ball is in equilibrium and it closes the opening completely but can move up and 
down easily. When the ball is disturbed away from the equilibrium position by an 
infinitesimal amount, dx, there will be a change in the pressure DP. This change in the 
pressure applies a net force causing the ball to accelerate: 

 

where A is the cross section of the glass tube. Changes in the pressure can be considered 
adiabatic, so that 

 

where g is the ratio of the specific heats. Through differentiation of this expression and 
using the expression for the volume change as Ax, we can show that the equation of 
motion can be expressed as: 

 

where V is the volume of the bottle. Then the period of oscillations can be given as 

P = Po +
Mg
a

2

2

dt
xdMPA =D

.consPV =g

0
2

2

2

=+ x
MV
PA

dt
xd g

d 

V 
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and 

 

By measuring all the quantities on the right you can determine the ratio of the specific 
heat of air. 
APPARATUS : Cp/CV apparatus and a stopwatch. 
PROCEDURE : After cleaning the inside of the tube and the steel ball, drop the 
ball into the tube. Start the time when the ball is at its lowest position and determine the 
total time for as many oscillations as possible as long as the amplitude of the oscillation 
is greater than 2-3 cm. 

 

 

PA
MVT
g

p2=

22
24

PTA
MVpg =
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THE RATIO OF HEAT CAPACITIES OF 
AIR,  g = CP/CV 
Name & Surname : Experiment # : 
Section : Date : 

 

DATA: 
 
Description / Symbol Value & Unit  

cm Hg h = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

Density of Mercury r =  13.6 g / cm3   

Acceleration  
due to gravity g  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Flask Number N = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Volume of the Flask V = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Diameter of the ball D = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Mass of the ball m = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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# of 
Trials 

# of 
Oscillations 

(n) 

Time for n 
Oscillations 
t (              ) 

Time for One 
Oscillation (Period) 

T (            ) 

1    

2    

3    

4    

5    

 

 

CALCULATIONS: 

 

Description Symbol Calculations (show each step) Result 

Radius of the ball R = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Cross sectional Area  
of the precision tube A = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Atmospheric Pressure  

 Po = r g h = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Pressure inside the bottle 
at Equilibrium Position 

of the Ball  =  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . .  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

A
mgPP oe +=
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Description / Symbol   Calculations (show each step) Result 

Average Period,Taverage = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

Ratio of Heat  
Capacities, g = Cp / Cv = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

 

Show the Dimensional Analysis of g clearly 
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APPENDICES 
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A. Physical Constants: 
Planck’s constant h 6.626x10-34 J or 4.136x10-21Mev. sec 

  1.05x10-34J.sec or 6.58x10-22 Mev.sec 

Universal Gas Constant R 8.314 J/oK mole 

Avagadro’s Number NA 6.022x1023 

Boltzman Constant k 1.381x10-23 J/oK or 8.617x10-5 ev/oK 

Electron charge e 1.602x10-19 C 

Speed of light in vacuum c 2.998x108 m/sec 

Stefan-Boltzman Constant s 5.67x10-8 W/m2.oK4 

Gravitational Constant G 6.672x10-11 N.m2/kg2 

Gravitational acceleration g 9.81 m/sec2 

Permeability of Vacuum µo 1.257x10-6 H/m 
or 
4p x 10-7 H/m Permitivity of Vacuum eo 8.854x10-12 C2/J.m 

Rydberg Constant  1.097x107 m-1 

Fine structure constant  7.297x10-3 

First Bohr radius ao 5.29x10-11 m 

Charge to mass ratio of the electron e/m 1.759x1011 C/kg 

Bohr Magneton µB 9.27x10-24 A.m2 

Atomic mass unit (amu) u 1.66x10-27 kg or 931.5 Mev 

Electron rest mass me 9.11x10-31 kg or 511 kev 

Proton rest mass Mp 1.672x10-27 kg or 938.2 Mev 

Neutron rest mass Mn 1.675x10-27 kg or 939.6 Mev 

Compton wavelength of electron lC 2.43x10-12 m 

  197 Mev. Fermi 

Standard volume of ideal gas  2.24x10-2 m3/mole 

1 eV  1.602x10-19 J 

1 amu  931.14 Mev 

1 g  5.610x1026 Mev 

1 electron mass  0.51098 Mev 

Ice point To 273.16 oK 

!

¥R
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B. Conversion Tables: 
 
LENGTH 
 cm meter km  inch foot mile 

cm 1 10-2 10-5 108 0.3937 3.281x10-2 6.214x10-6 

meter 100 1 10-3 1010 39.37 3.281 6.214x10-4 

km 105 1000 1 1013 3.937x104 3281 0.6214 

 108 1010 1013 1 3.937x10-9 3.281x10-10 4.214x10-14 

inch 28.540 0.0254 2.540x10-5 2.540x108 1 0.0833 1.578x10-5 

foot 30.48 0.3048 3.048x10-4 3.048x109 12 1 1.894x10-4 

mile 1.609x105 1609 1.609 1.609x1013 6.336x104 5280 1 
 
AREA 

 m2 cm2 ft2 in.2 circ mile 
m2 1 104 10.76 1550 1.974x109 

cm2 10-4 1 1.076x10-3 0.1550 1.974x105 

ft2 9.290x10-2 929.0 1 144 1.833x108 

in.2 6.452x10-4 6.452 6.944x10-3 1 1.273x106 

circular mill 5.067x10-10 5.065x10-6 5.454x10-9 7.854x10-7 1 
 
VOLUME 

 m3 cm3 liter ft3 in.3 

m3 1 106 1000 35.31 6.102x104 

cm3 10-6 1 1.000x10-3 3.531x10-5 6.102x10-2 

liter 1.000x10-3 1000 1 3.531x10-2 61.02 
ft3 2.832x10-2 2.832x104 28.32 1 1728 
in.3 1.639x10-5 16.39 1.639x10-2 5.787x10-4 1 

 
MASS 
 kg gram ounce pound amu m slug ton 
kg 1 103 35.27 2.205 6.024x1026 1.021x10-1 10-3 

gram 10-3 1 3.527x10-2 2.205x10-3 6.024x1023 1.021x10-4 10-6 

ounce 2.835x10-2 28.35 1 6.250x10-2 1.708x1025 2.895x10-3 2.835x10-5 

pound 4.536x10-1 4.536x102 16 1 2.372x1025 4.630x10-2 4.536x10-4 

amu 1.66x10-27 1.66x10-24 5.854x10-26 3.66x10-27 1 1.695x10-28 1.660x10-30 

m slug 9.806 9.806x103 3.454x102 21.62 5.9x1027 1 9.806x10-3 

ton 103 106 3.527x104 2.205x10-3 6.024x1029 1.021x102 1 
 
TIME 

 second minute hour year 
second 1 1.667 x 10-2 2.778 x 10-4 3.165 x 10-8 

minute 60 1 1.667 x 10-2 1.901 x 10-6 

hour 3600 60 1 1.140 x 10-4 

year 3.156 x 107 5.259 x 105 8.765 x 103 1 
 

A0

A0
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FORCE 
 Nt Dyne Kg F 
Nt 1 105 0.1020 

Dyne 10-5 1 1.020x10-6 

Kg F 9.807 9.807x105 1 
 
PRESSURE 
 pa mm Hg mbar kgf/m2 dyne/cm2 atmosphere 
Pascal 1 7.501x10-3 10-2 0.1020 10 9.869x10-6 
torr 1.333x102 1 1.333 13.6 1.333x103 1.316x10-3 
mbar 102 0.7501 1 10.20 103 9.869x10-4 

dyne/cm2 0.1 7.501x10-4 10-3 10.20x10-3 1 9.869x10-7 

kgf/m2 9.807 9.807x10-2 9.807x10-2 1 98.07 9.679x10-5 

atm 1.013x105 7.601x102 1.013x10-3 1.033x104 1.013x106 1 
 
ENERGY 

 Joule kilowatt-hour Btu erg Calorie electron volt 
Joule 1 2.778x10-7 9.480x10-4 107 0.2389 6.242x1018 

kilowatt-hour 3.6x106 1 3.412x103 3.6x1013 8.6x105 2.247x1025 

Btu 1.055x103 2.930x10-4 1 1.055x1010 2.468x102 6.585x1021 

erg 10-7 2.778x10-14 9.480x10-11 1 2.389x10-8 6.242x1011 

calorie 4.187 1.163x10-6 4.053x10-3 4.187x107 1 2.613x1019 

electron volt 1.602x10-19 4.450x10-26 1.519x10-22 1.602x10-12 3.827x10-20 1 
 
POWER 

 watt erg/sec calorie/sec kgfm/sec Btu/sec HP 
watt 1 107 0.2388 0.1020 3.413 1.360x10-3 

erg/sec 10-7 1 2.388x10-8 1.020x10-8 3.413 x10-7 1.360x10-10 

calorie/sec 4.187 4.187x107 1 0.4268 14.29 5.694x10-3 

kgfm/sec 9.807 9.807x107 2.343 1 33.47 133.3 

Btu/sec 0.2931 2.931x106 6.999x10-2 2.987x10-2 1 3.982x10-4 

HP 735.5 7.355x109 175.7 75 2.511x103 1 
 
MAGNETIC FIELD 

 gauss TESLA milligauss 
gauss 1 10-4 1000 
TESLA 104 1 107 

milligauss 0.001 10-7 1 
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