

STANDING WAVES IN A STRING

PHYL102

STANDING WAVES IN A STRING

STANDING WAVES IN A STRING

Standing waves are a type of resonance that occurs when waves interfere and produce pattern which occurs as incident waves constructively interfere with reflected waves. The points where the string is motionless are called nodes .

BOĞAZİÇİ UNIVERSITY

Physics Department

STANDING WAVES IN A STRING

If the length remains unchanged, standing waves only occur at specific frequencies. We have strings with nodes at both ends, which produces the following

$n=4$
$\frac{4}{2} \lambda_{4}=L$
$\lambda_{4}=\frac{2}{4} L$

$$
\lambda_{n}=\frac{2}{n} L \quad n=1,2,3, \ldots
$$

THEORY

STANDING WAVES IN A STRING

The wavelength of the waves travelling along the string with speed v depends on the tension \mathbf{T} and mass per unit length of the string $\boldsymbol{\mu}$. Tension is created by hanging mass \mathbf{m}. Tension \mathbf{T} is equal to $\mathbf{m g}$.

$$
\begin{aligned}
& v=\sqrt{T}=f \lambda \\
& T=\mu \lambda^{2} f^{2}
\end{aligned}
$$

APPARATUS

Waves in the string is created by string vibrator

Physics Department

EXAMPLE OF STANDING WAVES

- Place a mass on the mass holder.

$$
\mathrm{T}=\mathbf{m g}
$$

- Arrange the frequency of the vibration generator until standing wave is clearly observed.
- Measure the length of the string from the node marked as 1 to the pulley in order to calculate wavelength.

$$
T=\mu \lambda^{2} f^{2}
$$

EXPERIMENT

STANDING WAVES IN A STRING

OBJECTIVE:

to observe standing waves and determine the mass per unit length μ of the string.

$$
\begin{gathered}
v=\sqrt{\frac{T}{\mu}}=f \lambda \\
\mathrm{y}=\mathrm{mx} \\
T=\underbrace{\mu \lambda^{2}} f^{2}
\end{gathered}
$$

A plot of the tension \mathbf{T} versus \mathbf{f}^{2} data pairs that produce standing waves should follow a straight line whose slope is equal to $\mu \lambda^{2}$. Tension \mathbf{T} on the string is provided by the masses placed on the hanger on the other hand. $\mathbf{T}=\mathbf{m g}$

STANDING WAVES IN A STRING

- What to measure: Hanging mass \mathbf{m}, length of the cord \mathbf{L}, number of half wavelengths $\frac{\lambda}{2}$, frequency of the standing wave \mathbf{f}
- What to calculate: Tension $\mathbf{T}=\mathbf{m g}$, wavelength $\boldsymbol{\lambda}$
- Experimental findings : Mass per unit length $\boldsymbol{\mu}$

STANDING WAVES IN A STRING

PROCEDURE:

$$
T=\mu \lambda^{2} f^{2}
$$

- Produce a tension on the string by hanging masses to one end. $\mathbf{T}=\mathbf{m g}$
- Arrange the frequency of the wave generator until standing wave is clearly observed.
- Mark the position of the first node of standing wave on the string.
- Measure the length \mathbf{L} of the string from the first node to the turning point of the pulley. Count the number of half wavelengths in \mathbf{L}. Determine the wavelength.
- Record the frequency value along with the corresponding mass on the holder.
- By keeping the wavelength constant, change the mass and read the corresponding frequency for clearly observed standing waves for $\mathbf{4}$ more times.

EXAMPLE

$$
\begin{aligned}
& T_{1}=m_{1} g \rightarrow f=f_{1} \\
& T_{2}=m_{2} g \rightarrow f=f_{2} \\
& T_{3}=m_{3} g \rightarrow f=f_{3} \\
& T_{4}=m_{4} g \rightarrow f=f_{4} \\
& T_{5}=m_{5} g \rightarrow f=f_{5} \\
& \lambda=\text { constant }
\end{aligned}
$$

$$
T=\underbrace{\mu \lambda^{2}} f^{2}
$$

STANDING WAVES IN A STRING

Description / Symbol Value \& Unit
Take the data and fill in the page

Mass per unit length
of the Cord

Length of the Cord $L=$

Acceleration due to gravity
$g=\ldots 981 \mathrm{~cm} / \mathbf{s}^{2}$

Length of the Cord L is from the first node until the pulley

$\begin{aligned} & \text { Mass, } \\ & m(\quad) \end{aligned}$	\# of $\lambda / 2$ (keep constant)	$\lambda(\quad)$ (keep constant)	Frequency, \qquad		Tension $T=m \cdot g$

STANDING WAVES IN A STRING

- Plot tension T vs f^{2}
(Scale your axes such a way that your graph covers whole paper)
- Choose two points on the line

$$
T=\underbrace{\mu \lambda^{2}} f^{2}
$$

- Determine slope

Slope $=\mu \lambda^{2}$
Find μ
A) From the graph, choose two SLOPE POINTS other than data points,

	$\mathrm{SP}_{1}:(\quad ;$	
B) Calculate:	$\mathrm{SP}_{\mathbf{2}}:(\quad ;$	

SLOPE =

RESULTS:
Description / Symbol \quad Calculations (show each step) \quad Result

Mass per unit length
of the Cord $\quad \mu_{\mathrm{EV}}=$
\% Error for $\boldsymbol{\mu}=$ \qquad

Dimensional analysis for μ :

