Boğaziçi University Introductory Phys Labs

PHYL 202

THEORY

 Snell's law states a relation between incoming and refracted angles between two different environments

Physics Department

- But, if Snell's law would be the only equation that governs refraction, then why we would observe different lights coming out of a prism?
- There is one more equation that states the index of refraction of a material also depends on the incoming light.

$$n = A + \frac{B}{\lambda^2}$$

• In this experiment, we will examine the relation between index of refraction and wavelength of the light.

Example of $n = A + \frac{B}{\lambda^2}$

APPARATUS

power supply

spectrometer

EXPERIMENT

WHITE LIGHT REFLECTION Scheme for White Light Reflection

Physics Department

WHITE LIGHT REFLECTION – demonstration 0 ° – 0 ° match

58.5(12)° $30 \times 0.5^{\circ}$ $12 \times x$ x=0.20° (2 SF) 58.70° (2 SF after decimal point) 298.5(15)° 30 \times 0.5° 15 x x=0.25° (2 SF) 298.75° -> 360.00° - 298.75° = 61.25° (2 SF after decimal point)

 $(58.70^{\circ}+61.25^{\circ})/2=59.98^{\circ}=\alpha$

WHITE LIGHT REFLECTION – demonstration 0 ° – 180 ° match

118.5(16)° 238.5(20)°	
$30 \times 0.5^{\circ}$ $30 \times 0.5^{\circ}$	
16 x 20 x	
x=0.27° (2 SF) x=0.33° (2 SF)	
118.77° (2 SF after decimal point) 238.83° (2 SF after decima	l point)

 $(238.83^{\circ}-118.77^{\circ})/2 = 60.03^{\circ} = \alpha$

Physics Department

BOĞAZİÇİ UNIVERSITY

PRISM SPECTROMETER WHITE LIGHT REFLECTION

Fill the empty spaces accordingly.

α

White light reflection:

Angle (left) $\theta_{left} =$ Angle (right) $\theta_{right} =$

Prism Angle

 $|\theta_{right} - \theta_{left}|$ $|\theta_{right} + \theta_{left}|$ 2

0° -0° match

0° -180° match

MERCURY LAMP

 Find the minimum angle of deviation with respect to incoming light

BOĞAZİÇİ UNIVERSITY

PRISM SPECTROMETER MERCURY LAMP - demonstration

_abs

Measurements for the Mercury spectrum: Keep this unit throughout the experiment

COLOR	λ (A ^o)	θ	D _{min} (show your calculations)
Yellow-1	5790	308.5(27)°	30 0.5° ?=27*0.5/30 (2 SF) 27 ?° D _{min} =308.95°= 51.05°
Yellow-2	5769		
Green	5460		5
Blue (weak)	4916		
Blue	4358		
Violet-1	4077		
Violet-2	4046	786	3

PRISM SPECTROMETER MERCURY LAMP

Fill the empty spaces accordingly. Show your calculations **CALCULATIONS:** $Sin[(\alpha + D_{\min})/2]$ $1/\lambda^2$ n n = $Sin(\alpha/2)$ (result) COLOR (Yellow-1 Average Yellow-2 Green Blue (weak) Blue Violet-1 Violet-2 **BOĞAZİÇİ UNIVERSITY**

Physics Department

MERCURY LAMP

$$n = A + \frac{B}{\lambda^2}$$

A is y-intercept that is why you should start your x-axis from 0.

Scale your y-axis independently of your x-axis

 While drawing your line, try to even out your data points.

BOĞAZİÇİ UNIVERSITY

Physics Department

SP₁

SP₂ :(

:(

;

MERCURY LAMP

Phys Labs

Fill the empty spaces accordingly.

Dimensional Analysis of **B**: