

PRISM SPECTROMETER

PHYL 202
dPhys

THEORY

- Snell's law states a relation between incoming and refracted angles between two different environments
- But, if Snell's law would be the only equation that governs refraction, then why we would observe different lights coming out of a prism?
- There is one more equation that states the index of refraction of a material also depends on the incoming light.

$$
n=A+\frac{B}{\lambda^{2}}
$$

- In this experiment, we will examine the relation between index of refraction and wavelength of the light.

PRISM SPECTROMETER

B
 Example of $n=A+\frac{B}{\lambda^{2}}$

TPhys
Labs

BOĞAZİÇİ UNIVERSITY

Physics Department

LPhys
Labs

APPARATUS

BOĞAZİÇİ UNIVERSITY

Physics Department
[Phys

EXPERIMENT

WHITE LIGHT REFLECTION

 SGReñe for vilite light ReflectionFrom Leff

PRISM SPECTROMETER

WHITE LIGHT REFLECTION - demonstration $0^{\circ}-0^{\circ}$ match

$58.5(12)^{\circ}$
$30 \quad 0.5^{\circ}$
$12 \quad x$
$x=0.20^{\circ}(2 \mathrm{SF})$
$58.70^{\circ} \quad(2 \mathrm{SF}$ after decimal point $)$

```
298.5(15)}\mp@subsup{}{}{\circ
30}
x=0.25
(2 SF)
298.75' -> 360.00 - 298.75
=61.25
```

$\left(58.70^{\circ}+61.25^{\circ}\right) / 2=59.98^{\circ}=\alpha$

PRISM SPECTROMETER

WHITE LIGHT REFLECTION - demonstration $0^{\circ}-180^{\circ}$ match


```
118.5(16)}\mp@subsup{}{}{\circ
30
x=0.27 (2 SF)
118.77}\mp@subsup{}{}{\circ}\mathrm{ (2 SF after decimal point)
```

238.5(20) ${ }^{\circ}$
$\mathrm{x}=0.33^{\circ}$
238.83°
(2 SF)
(2 SF after decimal point)

PRISM SPECTROMETER

WHITE LIGHT REFLECTION

Fill the empty spaces accordingly.

White light reflection:
Angle (left) $\quad \theta_{\text {left }}=$
Angle (right) $\quad \theta_{\text {right }}=$
Prism Angle $\quad \alpha=\ldots \frac{\left|\theta_{\text {right }}+\theta_{l e f t}\right|}{2} \ldots \ldots . \frac{\left|\theta_{\text {right }}-\theta_{l e f t}\right|}{2} \ldots$
$0^{\circ}-0^{\circ}$ match
$0^{\circ}-180^{\circ}$ match

PRISM SPECTROMETER

MERCURY LAMP

- Find the minimum angle of deviation with respect to incoming light

PRISM SPECTROMETER MERCURY LAMP

PRISM SPECTROMETER MERCURY LAMP - demonstration

Measurements for the Mercury spectrum:
Keep this unit throughout the experiment

COLOR	$\lambda\left(\mathbf{A}^{0}\right)$	θ	$D_{\text {min }}$ (show vour calculations)
Yellow-1	5790	308.5(27) ${ }^{\circ}$	$\begin{array}{ll} \hline 30 & 0.5^{\circ} \\ 27 & ?=27^{*} 0.5 / 30(2 \mathrm{SF})^{\circ} \\ ?^{\circ} & \mathrm{D}_{\text {min }}=308.95^{\circ}=51.05^{\circ} \end{array}$
Yellow-2 5769			
Green	5460		
Blue (weak)	4916		
Blue	4358		
Violet-1	4077		
Violet-2	4046		

PRISM SPECTROMETER

MERCURY LAMP
Fill the empty spaces accordingly.

BOĞAZİÇİ UNIVERSITY

MERCURY LAMP

$$
n=A+\frac{B}{\lambda^{2}}
$$

A is y-intercept that is why you should start your x-axis from 0 .

Scale your y-axis independently of your x-axis

- While drawing your line, try to even out your data points.
n vs. $1 / \lambda^{2}$ graph

$\mathbf{S P}_{\mathbf{1}}$	$:($	$;$	
$\mathbf{S P}_{\mathbf{2}}$	$:(\quad ;$		

MERCURY LAMP

Fill the empty spaces accordingly.

Dimensional Analysis of \boldsymbol{A} :

Dimensional Analysis of \boldsymbol{B} :

