Boğaziçi University Introductory Phys Labs

PHYL 201

THEORY

Oscilloscopes display the change of an electrical signal over time, with voltage and time as the Y- and X-axes, respectively, on a calibrated scale. The waveform can then be analyzed for properties such as amplitude, frequency, rise time, time interval, distortion, and others.

TIME MEASUREMENT

- λ(cm) = L(cm) / #of full cycle
- T(s) = λ(cm) x TIME/DIV (s/cm)

f(Hz) = 1 / T(s)

2

L(cm) = 10.0 cm

3 peaks, 2 full cycles

TIME/DIV = 10.0 μ s/cm

 $\lambda = 10.0/2 = 5.00$ cm

T = λ x TIME/DIV = 5.00 cm x10.0µs/cm = 50.0 µs

 $f = 1/50.0 (\mu s)^{-1} = 20.0 \times 10^{3} Hz$

1

EXAMPLE #2

L(cm) = 10.0 cm

3

5

4

2

VOLTAGE MEASUREMENT

- $V_{pp}(Volt) = V_{pp}(cm) \times VOLT/DIV$
- V_{max} (Volt) = V_{pp} (Volt) / 2
- $V_{rms}(Volt) = V_{max} / \sqrt{2}$

 V_{max} (Volt) = V_{pp} (Volt) / 2 = 50.0 / 2 = 25.0 V

 $V_{rms}(Volt) = V_{max} / \sqrt{2} = 17.7 V$

EXPERIMENT SETUP

Oscillator generates sinusoidal waves (adjustable between 10 Hz – 10 MHz).

Oscilloscope is connected to oscillator to observe to generated signal.

Oscillator(Power supply) is set to 50x10 = 500 Hz

DATA-TAKING

- **PART 1:** Given f_{TV} with 2 different Time/div settings. You will take 2 measurements of frequency, 1 measurement of voltage.
- PART 2: Given f_{TV} (3rd) with 1 Time/div settings. You will take 1 measurement of frequency.
- **UNKNOWN FREQUENCY: Given** f_{unknow} and with 1 Time/div settings. You will take 1 measurement of frequency and voltage.

PART 1,2

Read the Frequency of the Oscillator.

Read Time/Div-1 & Volt/Div. Determine λ, T, f and VPP, Vmax, VRMS

Read Time/Div-2. Determine λ , T and f.

LAST PART: FINDING THE UNKNOWN FREQUENCY

Unknown Frequency:

Physics Department

Unknown Frequency:

Physics Department

Read Time/Div and Volt/Div for Unknown Frequency. Determine λ ,

T, f and VPP, Vmax, VRMS

Physics Department

Physics Department

Read V_{app} of unknown source. Compare with V_{RMS}

26

f _{TV}	20,000 Hz.	
TIME ME	SAUREMENTS	
TIME / DIV]		
of waves in L		S
ength of the wave, λ		
eriod, T		
requency, f _{EV}		
$\frac{\text{UNKNOW}}{V_{\text{measured}} = V_{\text{TV}}}$	N FREQUENCY: SAUREMENTS	
$\frac{UNKNOWN}{V_{\text{measured}} = V_{\text{TV}}}$ $\frac{TIME ME}{\text{TIME / DIV]}}$	N FREQUENCY: SAUREMENTS	
$\frac{UNKNOWN}{V_{\text{measured}} = V_{\text{TV}}}$ $\frac{TIME ME}{\text{TIME / DIV]}}$	N FREQUENCY: SAUREMENTS	
$\frac{UNKNOWI}{V_{\text{measured}} = V_{\text{TV}}}$ $\frac{TIME ME}{TIME / DIV]}$ of waves in L	N FREQUENCY: SAUREMENTS	
$\frac{UNKNOWI}{V_{measured} = V_{TV}}$ $\frac{TIME ME}{TIME / DIV]}$ of waves in L ength of the wave, λ	N FREQUENCY: SAUREMENTS	
$\frac{UNKNOWI}{V_{measured} = V_{TV}}$ $\frac{TIME ME}{IME / DIV]}$ of waves in L ength of the wave, λ priod, T	N FREQUENCY: SAUREMENTS	
UNKNOW! $V_{measured} = V_{TV}$ TIME METIME / DIV]of waves in Length of the wave, λ erriod, Trequency, f_{EV}	N FREQUENCY:	
UNKNOW! $V_{measured} = V_{TV}$ TIME ME TIME ME TIME ME TIME / DIV] of waves in L ength of the wave, λ eriod, T requency, f_{EV} VOLTAGE	N FREQUENCY: CSAUREMENTS MEASUREMENT	
UNKNOW! $V_{measured} = V_{TV}$ TIME ME TIME ME TIME ME TIME / DIV] of waves in L ength of the wave, λ eriod, T requency, f_{EV} VOLT AGE VOLT / DIV]	N FREQUENCY: SAUREMENTS MEASUREMENT	
UNKNOW! $V_{measured} = V_{TV}$ TIME METIME / DIV]of waves in Length of the wave, λ erriod, Trequency, f_{EV} VOLT AGEVOLT / DIV] p_{p} (div)	N FREQUENCY: CSAUREMENTS MEASUREMENT	
UNKNOW! $V_{measured} = V_{TV}$ TIME METIME / DIV]of waves in Length of the wave, λ eriod, Trequency, f_{EV} VOLT AGEVOLT / DIV] p_p (div) p_p (Volt)	N FREQUENCY: CSAUREMENTS MEASUREMENT	
UNKNOW! $V_{measured} = V_{TV}$ TIME METIME / DIV]of waves in Length of the wave, λ eriod, Trequency, f_{EV} VOLT / DIV] p_p (div) p_p (Volt) $max = V_{pp} / 2$	N FREQUENCY: SAUREMENTS MEASUREMENT	

