Boğaziçi University Introductory Dhys Labs

PHYL102

Simple harmonic motion is a special type of periodic motion where the restoring force on the moving object is directly proportional to the object's displacement magnitude and acts towards the object's equilibrium position.

ANGULAR SIMPLE HARMONIC MOTION

- The figure shows an angular version of simple harmonic oscillator. When a body is allowed to rotate freely about a given axis then the oscillation is known as the angular oscillation.
- The particle or the body undergoes small angular displacement about mean position. This results, when the body under stable equilibrium is disturbed by a small external torque.
- A *torsional pendulum* consists of a disk suspended from a wire, which is then twisted and released, resulting in an oscillatory motion.

The oscillatory motion is caused by a restoring torque which is proportional to the angular displacement,

$$\tau = I\alpha = -\kappa\theta$$

(Angular form of Hooke's law)

Where κ is the torsion constant that depends the length, diameter and material of suspension wire. I is the rotational inertia of the object about twisting axis and α is the angular acceleration of the object.

EQUATION OF MOTION:

 $\tau = I\alpha = -\kappa\theta$

Angular acceleration $\alpha = \frac{\mathrm{d}^2\theta}{\mathrm{d}t^2}$

$$I\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} = -\kappa\theta \qquad \rightarrow \qquad \frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} + \frac{\kappa}{I}\theta = 0 \qquad \rightarrow \qquad \frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} + \omega^2\theta = 0$$

Where
$$\omega^2 = \frac{\kappa}{I}$$
 $\omega = \sqrt{\frac{\kappa}{I}}$ $T = \frac{2\pi}{\omega}$

$$T = 2\pi \sqrt{\frac{I}{\kappa}}$$

APPARATUS

EXPERIMENT

OBJECTIVE: To find the moment of inertia of the ring and compare result with theoretical value

- **PART** I : > Measure the period of disc
 - Calculate the moment of inertia of the disc
 - Find the torsion constant κ

- **PART II** :> Measure the period of the disc and the ring together
 - Calculate the total moment of inertia of (disc + ring)
 - Find the experimental value of the moment of the inertia of the ring

Theoretical value of the moment of inertia of the Disc:

Theoretical value of the moment of inertia of the Ring:

$$I_{ring} = \frac{1}{2} M \left[\left(\overline{R}_{inner} \right)^2 + \left(\overline{R}_{outer} \right)^2 \right]$$

PART I

Use your phone's stopwatch to measure the time, *t*, for the disc to complete 50 oscillations, and determine the mean period of oscillation *T*.

$$T = 2\pi \sqrt{\frac{I}{\kappa}} \rightarrow I_{disc} = \frac{MR^2}{2}$$

compute \mathcal{K} torsion constant of the rod.

PART II

Place the ring whose moment of inertia is unknown, on the disc. Use your phone's stopwatch to measure the time to complete 50 oscillations, and determine the mean period of oscillation *T*.

$$T = 2\pi \sqrt{\frac{I_{total}}{\kappa}}$$

Compute the sum of the moment of inertias of the disc and the ring.

BOĞAZİÇİ UNIVERSITY Physics Department

PART II

$$T = 2\pi \sqrt{\frac{I_{total}}{\kappa}}$$

Total moment of inertia is equal to

$$I_{total} = I_{disc} + I_{ring}$$

Experimental value of the moment of inertia of the **ring**:

$$I_{ring} = I_{total} - I_{disc}$$

Compute the theoretical value of moment of inertia and determine the percentage error.

Take the	Description / Sym	bol	_	Value & Unit	# of Significant Figures
data and	Time for				
fill in	50 <u>oscillations</u>	t	7		
the page	Time <u>for</u>				
for the	one oscillation	Т	=	••••••	
DISC.	Diameter				
	of the disc	<u>D_{disc}</u>	=		••••••
	Radius of the disc	<u>Rdisc</u>	=		
	Mass of the disc	<u>M_{disc}</u>		=	/

Part 1: Moment of Inertia of the Disk

Take the data, fill in the page for the Disc + Ring.

		Description / Sym	ibol	Value & Unit	# of Significant Figures
fill		Time for 50 oscillations	<i>t</i> * =		
the		Time <u>for</u>	<i>T</i> *=		
		Outer <u>diameter</u>			
		of the ring	<u>D_{outer} =</u>		
Description	/ Symbol	Value &	Unit	# of Significant Figures	in l
Outer Radiu:	s of				
the ring Inner diame		=			
of the ring	<u>Dinner</u>	=			
Inner Radius	of				
the ring	Rinner	=		3/	
Mass of the					
ring	<u>M_{ring} =</u>			BOĞAZ Physics De	ZİÇİ UNIVERSITY

- Use theoretical formula to calculate I_{disc.}
- Use period formula for torsion pendulum, calculate torsion constant.
- Use period formula and calculated torsion constant, determine $I_{total}=I_{disc} + I_{ring}$
- Find I_{ring}

BOĞAZİÇİ UNIVERSITY Physics Department

Description		Calculations (show each step)	Result
Moment of Inertia of the			
disk (theoretical) Idisc	=		λ
Torsion constant of the			
rod (emprical) K	=		
Description		Calculations (show each step)	Result
Total Moment of <u>Inertia</u> o <u>ring</u> (emprical) / _{total}	=)
Moment of <u>Inertia</u> of <u>the</u>			
Ring (emprical)	=		
Theoretical value of the N	lomen	it of	
Inertia of the ring Iring TV	ā		

% Error for the Moment of Inertia of the object:

CALCULATIONS:

CALCULATIONS:

• Use theoretical formula to calculate $I_{disc.}$

 Use period formula
for torsion
pendulum,
calculate
torsion
constant.

Description	Calculations (show each step)	Result	
<u>Moment</u> of <u>Inertia</u> of <u>the</u>	$I_{disc} = \frac{MR^2}{2}$		
disk (theoretical) <i>I</i> disc	=		
Torsion constant of the rod (emprical) κ	$T = 2\pi \sqrt{\frac{I}{\kappa}}$	2	

	Description	Calculations (show each step)	Result
Use period	Total Moment of Inertia of the o	lisk and the	
formula and	ring (emprical) / _{total} =	$\dots T = 2\pi \sqrt{\frac{I_{total}}{\kappa}}$	
calculated torsion			
constant,		Find I _{tot}	al
determine	Moment of <u>Inertia</u> of <u>the</u> Ring (<u>emprical</u>) <u>I_{ring-EV} =</u>		
$I_{total} = I_{disc} + I_{ring}$		$I_{ring} = I_{total} -$	I_{disc}
Subtract I_{disc} and	Theoretical value of the Momer	nt of	
find I _{ring.}	Inertia of the ring Iring-TV =	$\cdots I_{ring} = \frac{1}{2} M \left[\left(\overline{R}_{inner} \right)^2 + \right]$	$\left(\overline{R}_{outer}\right)^2$

• Use theoretical formula and calculate I_{ring.}

% Error for the Moment of Inertia of the object: ...