

ANGULAR HARMONIC MOTION

PHYL102

ANGULAR HARMONIC MOTION

Simple harmonic motion is a special type of periodic motion where the restoring force on the moving object is directly proportional to the object's displacement magnitude and acts towards the object's equilibrium position.

Physical Pendulum

$$
T=2 \pi \sqrt{\frac{I}{M g h}}
$$

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

$T=2 \pi \sqrt{\frac{m}{k}}$

Torsional Pendulum

$$
T=2 \pi \sqrt{\frac{I}{\kappa}}
$$

TODAY

Simple Harmonic Oscillator

ANGULAR HARMONIC MOTION

ANGULAR SIMPLE HARMONIC MOTION

- The figure shows an angular version of simple harmonic oscillator. When a body is allowed to rotate freely about a given axis then the oscillation is known as the angular oscillation.
- The particle or the body undergoes small angular displacement about mean position. This results, when the body under stable equilibrium is disturbed by a small external torque.
- A torsional pendulum consists of a disk suspended from a wire, which is then
 twisted and released, resulting in an oscillatory motion.

BOĞAZİÇİ UNIVERSITY

ANGULAR HARMONIC MOTION

The oscillatory motion is caused by a restoring torque which is proportional to the angular displacement,

$$
\tau=I \alpha=-\kappa \theta
$$

(Angular form of Hooke's law)

Where κ is the torsion constant that depends the length, diameter and material of suspension wire. I is the rotational inertia of the object about twisting axis and α is the angular acceleration of the object.

BOǦAZİÇİ UNIVERSITY

Physics Department

ANGULAR HARMONIC MOTION

ANGULAR HARMONIC MOTION

EQUATION OF MOTION:

$\tau=I \alpha=-\kappa \theta$
Angular acceleration $\quad \alpha=\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} t^{2}}$
$I \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d} t^{2}}=-\kappa \theta \quad \rightarrow \quad \frac{\mathrm{d}^{2} \theta}{\mathrm{~d} t^{2}}+\frac{\kappa}{I} \theta=0 \quad \rightarrow \quad \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d} t^{2}}+\omega^{2} \theta=0$
Where $\quad \omega^{2}=\frac{\kappa}{I} \quad \omega=\sqrt{\frac{\kappa}{I}} \quad T=\frac{2 \pi}{\omega}$

$$
T=2 \pi \sqrt{\frac{I}{\kappa}}
$$

ANGULAR HARMONIC MOTION

APPARATUS

ANGULAR HARMONIC MOTION

ANGULAR HARMONIC MOTION

EXPERIMENT

ANGULAR HARMONIC MOTION

OBJECTIVE: To find the moment of inertia of the ring and compare result with theoretical value

- PART I : > Measure the period of disc
$>$ Calculate the moment of inertia of the disc
$>$ Find the torsion constant κ
- PART II :> Measure the period of the disc and the ring together
> Calculate the total moment of inertia of (disc + ring)
$>$ Find the experimental value of the moment of the inertia of the ring

ANGULAR HARMONIC MOTION

Theoretical value of the moment of inertia of the Disc:

$$
I_{d i s k}=\frac{M R^{2}}{2}
$$

ANGULAR HARMONIC MOTION

Theoretical value of the moment of inertia of the Ring:

$$
I_{\text {ring }}=\frac{1}{2} M\left[\left(\bar{R}_{\text {inmer }}\right)^{2}+\left(\bar{R}_{\text {outer }}\right)^{2}\right]
$$

ANGULAR HARMONIC MOTION

PART I
Use your phone's stopwatch to measure the time, t, for the disc to complete 50 oscillations, and determine the mean period of oscillation T.

$$
T=2 \pi \sqrt{\frac{I}{\kappa}} \quad \rightarrow \quad I_{\text {disc }}=\frac{M R^{2}}{2}
$$

compute K torsion constant of the rod.

ANGULAR HARMONIC MOTION

PART II

Place the ring whose moment of inertia is unknown, on the disc. Use your phone's stopwatch to measure the time to complete 50 oscillations, and determine the mean period of oscillation T.

$$
T=2 \pi \sqrt{\frac{I_{\text {total }}}{\kappa}}
$$

Compute the sum of the moment of inertias of the disc and the ring.

BOĞAZİC̣í UNIVERSITY

Physics Department

PART II
$T=2 \pi \sqrt{\frac{I_{\text {total }}}{\kappa}}$
Total moment of inertia is equal to
$I_{\text {total }}=I_{\text {disc }}+I_{\text {ring }}$
Experimental value of the moment of inertia of the ring:
$I_{\text {ring }}=I_{\text {total }}-I_{\text {disc }}$
Compute the theoretical value of moment of inertia and determine the percentage error.

ANGULAR HARMONIC MOTION

Part 1: Moment of Inertia of the Disk
Take the
Description / Symbol
Value \& Unit
\# of Significant Figures
data and
fill in
the page Time for
for the
DISC.
Diameter
of the disc $\quad D_{\text {disc }}=$

Radius of the disc $R_{\text {disc }}=$ \qquad

Mass of the disc M disc $=$ \qquad
\qquad

BOǦAZİÇİ UNIVERSITY

Physics Department

ANGULAR HARMONIC MOTION

Description / Symbol
Value \& Unit
\# of Significant Figures

Take the data, fill
 in the page for the
 Disc + Ring.

Time for
50 oscillations $t^{*} \quad=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
\qquad

Time for
one oscillation $T^{*}=$ \qquad

Outer diameter
of the ring
$D_{\text {outer }}=$

Description / Symbol	Value \& Unit	\# of Significant Figures	
Outer Radius of			
the ring $\quad R_{\text {outer }}=$			
Inner diameter			
of the ring $D_{\text {inner }}$			
Inner Radius of			
the ring $\quad R_{\text {inner }}=$			
Mass of the			
$\underline{\text { ring }} \quad M_{\text {ring }}=$		BOĞA Physics	$\begin{aligned} & \text { UNIVERSITY } \\ & \text { it } \end{aligned}$

ANGULAR HARMONIC MOTION

- Use theoretical formula to calculate $\mathrm{I}_{\text {disc. }}$
- Use period formula
for torsion pendulum, calculate torsion constant.
- Use period formula and calculated torsion constant, determine $\mathrm{I}_{\text {total }}=\mathrm{I}_{\text {disc }}+$ $\mathrm{I}_{\text {ring }}$
- Find $\mathrm{I}_{\mathrm{ring}}$

BOĞAZİÇİ UNIVERSITY

Moment of Inertia of the
disk (theoretical) $I_{\text {disc }}=$

Torsion constant of the rod (emprical) $\kappa=$

Description
Calculations (show each step)
Result

Total Moment of Inertia of the disk and the
ring (emprical) $I_{\text {total }}=$ \qquad

Moment of Inertia of the
Ring (emprical) $l_{\text {ring-EV }}=$

Theoretical value of the Moment of
Inertia of the ring $l_{\text {ring }}$ TV \qquad
\% Error for the Moment of Inertia of the object:

ANGULAR HARMONIC MOTION

CALCULATIONS:

- Use theoretical
formula to
calculate $\mathrm{I}_{\text {disc. }}$.
- Use period formula
for torsion
pendulum,
calculate
torsion
constant.

Description
Calculations (show each step)
Result

BOĞAZİÇİ UNIVERSITY
Physics Department

ANGULAR HARMONIC MOTION

- Use period formula and calculated torsion constant, determine
$\mathrm{I}_{\text {total }}=\mathrm{I}_{\text {disc }}+\mathrm{I}_{\text {ring }}$
- Subtract $\mathrm{I}_{\text {disc }}$ and find $\mathrm{I}_{\mathrm{ring}}$.
- Use theoretical
formula and calculate $I_{\text {ring. }}$.

Description

Theoretical value of the Moment of
Inertio of the ring ! ling TV $=\cdots I_{\text {ring }}=\frac{1}{2} M\left[\left(\bar{R}_{\text {imer }}\right)^{2}+\left(\bar{R}_{\text {ouluer }}\right)^{2}\right]$
\% Error for the Moment of Inertia of the object:
BOĞAZİÇİ UNIVERSITY
Physics Department

