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Rotational inertia I, or more commonly known as moment of 

inertia, is a useful definition when dealing with objects rotating 

around a fixed axis. It quantifies the resistance of an object to 

angular acceleration just as mass quantifies the resistance of an 

object to linear acceleration. 
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THEORY

ROTATIONAL INERTIA



Let us start by discussing rotational energy 𝑲𝑹

of a point particle rotating around an axis with 

velocity 𝒗 at a fixed radial distance 𝒓 as given 

in the figure. Let us denote the mass of the 

particle 𝒎. Then 𝑲𝑹 is simply;

Now, recall the calculation of arc length 𝒔 on a circle with radius 𝒓;

𝑲𝑹 =
𝟏

𝟐
𝒎𝒗𝟐

𝒔 = 𝒓𝜽

Keeping in mind that 𝒓 is constant, we take the time derivative of 

both sides. Recall that time derivative of 𝒔 and 𝜽 are velocity 𝒗
and angular velocity 𝝎. 

𝒗 = 𝒓𝝎
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If we use the last equation to replace 𝒗 with 𝝎𝒓 in the kinetic 

energy equation we get;

Here, we define the moment of inertia as the quantity in 
parenthesis as;

𝑰 = 𝒎𝒓𝟐

Note that 𝑰 is calculated for a point 

particle in our specific example. 

𝑲𝑹 =
𝟏

𝟐
𝒎 𝒓𝝎 𝟐 =

𝟏

𝟐
𝒎𝒓𝟐 𝝎𝟐

To generalize this result to arbitrary 

rigid objects, we can start by thinking 

of them as combinations of small 

point-like particles indexed with 𝒊 as 

shown in the figure. 

𝑲𝑹 =
𝟏

𝟐
𝑰𝝎𝟐
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The rotational energy of 𝒊𝒕𝒉 particle is simply;

Since the object rotates as a whole, each particle indexed with 𝒊
has the same 𝝎. So;

Let us finally write the total rotational kinetic energy of the object;

𝑲𝑹
𝒕𝒐𝒕𝒂𝒍 =෍

𝒊

𝑲𝑹
𝒊 =

𝟏

𝟐
෍

𝒊

𝒎𝒊𝒓𝒊
𝟐 𝝎𝟐

The sum in the parenthesis gives us I of the whole object as;   

𝑲𝑹
𝒊 =

𝟏

𝟐
𝒎𝒊𝒗𝒊

𝟐

𝑲𝑹
𝒊 =

𝟏

𝟐
𝒎𝒊𝒓𝒊

𝟐𝝎𝟐

𝑰 =෍

𝒊

𝒎𝒊𝒓𝒊
𝟐

𝑲𝑹
𝒕𝒐𝒕𝒂𝒍 =

𝟏

𝟐
𝑰𝝎𝟐
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We have managed to find a way to extend our result to rigid 

objects and the last obstacle in our way is to find a way to divide 

the object to point-like particles.  If we were to choose these 

particles to have infinitesimally small masses ∆𝒎𝒊 and take the 

limit ∆𝒎𝒊→ 𝟎 of the previous sum, we get the integral form;

𝑰 = 𝐥𝐢𝐦
∆𝒎𝒊→𝟎

෍

𝒊

∆𝒎𝒊𝒓𝒊
𝟐 = න𝒓𝟐 𝒅𝒎

Since you may be unfamiliar with the integration techniques, you 

are not required to carry out any integrations during this 

experiment. Nevertheless, you should know that the moment of 

inertia formulas that are given in the next slide are calculated by 

this integral.
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𝑰𝑫𝑰𝑺𝑲
𝑪𝑴 =

𝟏

𝟐
𝑴𝑹𝟐 𝑰𝑫𝑰𝑺𝑲

𝑫𝒊𝒂𝒎𝒆𝒕𝒆𝒓 =
𝟏

𝟒
𝑴𝑹𝟐 𝑰𝑹𝑰𝑵𝑮 =

𝟏

𝟐
𝑴 𝑹𝒊

𝟐 + 𝑹𝒐
𝟐
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Theoretical rotational inertia formulas that we are going to use 
during this experiment are given below. Each assumed to have 
uniformly distributed mass of M.



As given in the sketch on 

the right side, rope is 

wound around the drum 

and the mass m is released 

from a height of h. Here, 

𝒓 is the radius of the drum 

that we wound our rope 

around. Drum and the 

object on top can rotate 

freely. A 3D side view is 

given below.

Here, T is the tension 

throughout the rope and 

𝝎 is the angular speed. 

DISK

DRUM
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ROTATIONAL INERTIA - Aim

What to measure: Radius of the drum 𝒓, height of mass holder

from the floor 𝒉, mass on the mass holder 𝒎, time for

descent 𝒕 for experimental calculations. Mass of the disk 𝑴𝒅𝒊𝒔𝒌, 

mass of the ring 𝑴𝒓𝒊𝒏𝒈, radius of the disk 𝑹𝒅𝒊𝒔𝒌, inner and outer 

radius of the ring 𝑹𝒊−𝒓𝒊𝒏𝒈 and 𝑹𝒐−𝒓𝒊𝒏𝒈 for theoretical calculations

given in slide 10.

What to calculate : Combined moment of 

inertia for 3 configurations

Experimental findings : Moment of inertia of

𝑰𝑫𝑰𝑺𝑲
𝑪𝑴 , 𝑰𝑫𝑰𝑺𝑲

𝑫𝒊𝒂𝒎𝒆𝒕𝒆𝒓, 𝑰𝑹𝑰𝑵𝑮 and 𝑰𝑫𝑹𝑼𝑴

Theoretical findings : Moment of inertia of

𝑰𝑫𝑰𝑺𝑲
𝑪𝑴 , 𝑰𝑫𝑰𝑺𝑲

𝑫𝒊𝒂𝒎𝒆𝒕𝒆𝒓 and 𝑰𝑹𝑰𝑵𝑮



By conservation of energy, the potential energy lost by the hanging 

mass will be converted to kinetic energy throughout the system. 

Drum and the object that is placed on top will gain rotational kinetic 

energy while hanged mass 𝒎 will gain translational kinetic energy. 

Let us denote final velocity  𝒗 of masses just before they hit the 

ground and the final angular velocity of the rotating part 𝝎. So, we 

get;

𝑬𝑷𝒐𝒕. = 𝑬𝑲𝒊𝒏. = 𝑲𝑻 +𝑲𝑹

Note that 𝑰 is combination of rotational inertia of the drum and the 

object that is placed on top of it. We can use 𝒗 = 𝒓𝝎 to replace 𝝎 ;

𝒎𝒈𝒉 =
𝟏

𝟐
𝒎𝒗𝟐 +

𝟏

𝟐
𝑰𝝎𝟐

𝒎𝒈𝒉 =
𝟏

𝟐
𝒎𝒗𝟐 +

𝟏

𝟐
𝑰
𝒗𝟐

𝒓𝟐

In this experiment, we won’t be measuring 𝒗 but instead we will 

measure time 𝒕 of descent of mass 𝒎.

𝑰 = 𝒎𝒓𝟐
𝟐𝒈𝒉

𝒗𝟐
− 𝟏
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Since the mass experiences a free fall from rest with constant 

acceleration 𝒂, we have;

Hence, we will measure 𝒎,𝒓, 𝒕, 𝒉 and use 𝒈 = 𝟗. 𝟖𝟏𝒎/𝒔𝟐 to calculate 

experimental value of 𝑰 for 3 different configurations. Note that this 

formula does not contain any properties of the object that is 

rotated such as mass and shape, which makes it perfect to find 

moment of inertia of objects with arbitrary shapes.

𝒉 =
𝟏

𝟐
𝒂𝒕𝟐

The mass 𝒎 starts from rest so the final velocity is 𝒗 = 𝒂𝒕. 
Replacing into the equation above and leave 𝒗 alone;

𝒉 =
𝟏

𝟐

𝒗

𝒕
𝒕𝟐 =

𝟏

𝟐
𝒗𝒕 𝒗 =

𝟐𝒉

𝒕
Substituting this into the moment of inertia equation in the 
previous slide, we get;

𝑰 = 𝒎𝒓𝟐
𝒈𝒕𝟐

𝟐𝒉
− 𝟏
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APPARATUS

ROTATIONAL INERTIA



This is the drum

on which we will 

place the disk

and the ring

Disk is placed on 

top of the drum

and will rotate 

around an axis 

that goes through 

its center of mass 

CM

The mass holder is 

hanged at the end of the 

rope and it does not have 

any additional weights 

stacked up on it in this 

picture. Total mass here 

will be called m

The rope is wound around 

the drum and a mass is 

hanged to the end of it

Ruler is here to measure 

the height of the masses 

from the ground h

During this experiment, we are going to calculate moment of inertia 

of a disk and a ring using the setup below. Then, we will compare 

our results with theoretical calculations of these objects.

15
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These are sample videos. Do not use these to take measurements.
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Video1 Video2 Video3
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Suppose we have a reading of diameter d as given in the figure. 
Extension of 0 bar on the lower scale points to ruler on top gives 
us a reading with precision up to 0.1 cm. In this example, this line 
points to somewhere between 1.2 cm and 1.3 cm. To find the next 
digit,  we check where the lines on both upper and lower scales 
coincide. In our example, 3 on the lower coincides with 1.5 cm on 
the upper scale so our final reading of d is; 

𝟏. 𝟐𝒄𝒎 + 𝟎. 𝟎𝟑𝒄𝒎 = 𝟏. 𝟐𝟑𝒄𝒎
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Let us look at more examples on how to read a vernier caliper.

How to measure with vernier calipers:

If a vernier caliper output a measurement reading of 2.13 cm, this 
means that:

• The main scale contributes the main number(s) and one decimal 
place to the reading (E.g. 2.1 cm, whereby 2 is the main number and 
0.1 is the one decimal place number)

• The vernier scale contributes the second decimal place to the 
reading (E.g. 0.03 cm). Look at the image below and look closely for 
an alignment of the scale lines of the main scale and vernier scale. 
The aligned line corresponds to 3.

18
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Example:

Main number: 3

One decimal: 3

3.3

The aligned line 

corresponds to 4. 

0.04

RESULT: 3.34 cm
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Example:

Main number: 10

One decimal: 0

10.0

The aligned line 

corresponds to 2. 

0.02

RESULT: 10.02 

cm
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Special Case: Reading of 3.89 cm, 3.90 cm and 3.91cm.

Main number: 3

One decimal: 8

3.8

The aligned line 

corresponds to 9. 

0.09

RESULT: 

3.89 cm
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Special Case: Reading of 3.89 cm, 3.90 cm and 3.91cm.

Main number: 3

One decimal: 9

3.9

The aligned line 

corresponds to 10. 

0.00

RESULT: 

3.90 cm
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Special Case: Reading of 3.89 cm, 3.90 cm and 3.91cm.

Main number: 3

One decimal: 9

3.9

The aligned line 

corresponds to 1. 

0.01

RESULT: 

3.91 cm
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The following images are just to give you an idea of what to expect 

to find in the Lab. Do not use the values you see in this 

presentation. You will find similar content to these pictures in the 

Lab. This is on page 95 of your lab book.
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Will be derived from d



Read height h of the mass holder from the floor from the bottom of 

mass hanger and record to page 95 of your lab book.
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Read height h 

from here



You will use the 

same m for all 

configs. 

Precision: 1g

Next, record the mass on the mass holder m to page 95 of your lab 

book.
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PART 1

Rotational Inertia of Disk
• About CM

• About Diameter

ROTATIONAL INERTIA



Time the descent of mass m when disk is rotated about its center of 

mass CM and about its diameter. There will be two sections in the 

DataVideo for each configuration and two t values will be measured 

from these. Then, record them to page 95 of your lab book.
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Avg. of 𝒕𝟏
′ and 𝒕𝟐

′Average of 𝒕𝟏 and 𝒕𝟐



You will be using your phones to 

measure time of descent t using 

chronometer of your cell phones. An 

example is given on the right.

Do not use the time of descent 

value given here. This is just to 

show you how the time the descent.
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Video4



PART 2

Rotational Inertia of Ring
Ring placed on top of the disk rotating about its CM

ROTATIONAL INERTIA



Adding the ring on top, we do the same as previous slide and 
record them to page 97 of your lab book.
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Average of 𝒕𝟏
′′ and 𝒕𝟐

′′



You will be shown mass of the disk which you will record to page 
97 of your lab book.

Reading is 

in grams
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You will be shown radius of the disk which you will record to page 
97 of your lab book.
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Will be derived from 𝑫𝒅𝒊𝒔𝒌



Continuing to page 97 of your lab book, you will record mass 
measurement of the ring.

Reading is in grams
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Continuing to page 97 of your lab book, you will record inner and 
outer diameter measurements of the ring.

Will be derived from 𝑫𝒊−𝒓𝒊𝒏𝒈

Will be derived from 𝑫𝒐−𝒓𝒊𝒏𝒈
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Will be derived from 𝑫𝒊−𝒓𝒊𝒏𝒈

Will be derived from 𝑫𝒐−𝒓𝒊𝒏𝒈



On page 99 of your lab book, we will calculate moment of inertia of 
3 different configurations by plugging in our measurements we 
recorded to pages 95 and 97 into the equation we have found;

𝑰 = 𝒎𝒓𝟐
𝒈𝒕𝟐

𝟐𝒉
− 𝟏 use 𝒈 = 𝟗. 𝟖𝟏𝒎/𝒔𝟐

ROTATIONAL INERTIA – Experiment

37



Next on page 99 of your lab book, we will calculate moment of 
inertia of 𝑰𝑫𝑰𝑺𝑲

𝑪𝑴 , 𝑰𝑫𝑰𝑺𝑲
𝑫𝒊𝒂𝒎𝒆𝒕𝒆𝒓, 𝑰𝑹𝑰𝑵𝑮 and 𝑰𝑫𝑹𝑼𝑴. There are 4 unknowns, 

but we only get 3 equations from our measurements. We borrow 
one more equation from our theoretical calculations;

𝑰𝑫𝑰𝑺𝑲
𝑪𝑴 = 𝟐𝑰𝑫𝑰𝑺𝑲

𝑫𝒊𝒂𝒎𝒆𝒕𝒆𝒓

So, you can solve this set of equations and fill the next part in your 
lab books. 
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Please show your work fully on a clean A4 (or a blank page from 
your lab book) and add to your lab report.



On page 101 of your lab book, we will calculate moment of inertia 
of 𝑰𝑫𝑰𝑺𝑲

𝑪𝑴 , 𝑰𝑫𝑰𝑺𝑲
𝑫𝒊𝒂𝒎𝒆𝒕𝒆𝒓 and 𝑰𝑹𝑰𝑵𝑮 theoretically by the equations given in 

slide 8 or page 92 of your lab books. 
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At last, you will compare  your experimental results with the 
theoretical results by calculating percent error of 𝑰 for each case; 

∆𝑰 =
𝑰𝒕𝒉 − 𝑰𝒆𝒙𝒑

𝑰𝒕𝒉
× 𝟏𝟎𝟎

Finalize your report by showing dimensional analysis of rotational 
inertia.
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