

REFLECTION AND REFRACTION

PHYL202

REFLECTION AND REFRACTION

In this experiment you will be tracing the light rays reflected or refracted from various optical elements and determine some relevant quantities of these elements.

PART I: REFLECTION

REFLECTION AND REFRACTION

A) PLANE MIRROR

In a plane mirror the incident and reflected angles with respect to the normal are equal

REFLECTION AND REFRACTION

A) PLANE MIRROR

- Please watch the video, and prepare set of white papers, ruler, and protractor to draw your pictures and make your measurements.
- Draw the image on white paper, maximizing your screen lights and turning the lights off in your room will help you.
- With help of protractor, draw the normal line to the surface.
- Measure incident and outgoing angles, θ_{i} and θ_{r} respectively.

REFLECTION AND REFRACTION

Measure Incident and Reflected Angle θ_{i} and θ_{r}

BOĞAZİÇİ UNIVERSITY

Physics Department

REFLECTION AND REFRACTION

Measure Incident and Reflected Angle θ_{i} and θ_{r}

B) CONCAVE - CONVERGING MIRROR

Focal lengths of concave and convex mirrors are simply half the radius (R) of curvature for the respective surface.

$$
f=\frac{R}{2} \quad(\mathrm{R} \text { will be determined with help of Chord Method })
$$

Arrange size of your video so that 10 cm of the picture matches exactly with 10.0 cm of your ruler as it is already implied in your data video instructions!

If not possible, you can scale to a smaller value than 10 cm , and rescale your measurements.

B) CONCAVE - CONVERGING MIRROR

Get a white paper and draw the picture while watching your data video

- measure $f_{\text {concave mirror }}$

B) CONCAVE - CONVERGING MIRROR

Fill the empty spaces accordingly.
B) Concave - Converging Mirror:

Focal Length of the mirror $f_{\mathrm{EV}}=$
Radius of the mirror
(From Chord Method) $\quad R=$
Focal length of the mirror
(From Chord Method) $\quad f_{\mathrm{CV}}=$
\% difference in focal lengths $=\quad \ldots \ldots \cdot \frac{\left|f_{C V}-f_{E V}\right|}{f_{C V}} \times 1.00 \ldots \ldots$

REFLECTION AND REFRACTION

C) CONVEX - DIVERGING MIRROR

Focal lengths of concave and convex mirrors are simply half the radius of curvature for the respective surface.

REFLECTION AND REFRACTION

C) CONVEX - DIVERGING MIRROR

Get a white paper and draw the picture

- measure $\mathrm{f}_{\text {convex mirror }}$

C) CONVEX - DIVERGING MIRROR

Fill the empty spaces accordingly.
C) Convex - Diverging Mirror:

Focal Length of the mirror $f_{\mathrm{EV}}=$
Radius of the mirror
(From Chord Method) $\quad R=$
Focal length of the mirror
(From Chord Method) $\quad f_{\mathrm{CV}}=$
This is a sanity check, the result should be around
Thickness of the mirror $x=\sim 0.5$ cm, otherwise pleapese.check your chord. method
\% difference in focal lengths $=\quad \ldots \ldots \ldots \cdot \frac{\left|f_{C V}-f_{E V}\right|}{f_{C V}} \times 10.10 \ldots$

PART II: REFRACTION

D) CONVEX - CONVERGING LENS

Focal length and the radius of curvature of a lens is related through the following expression:

$$
\frac{1}{f}=(n-1) \frac{2}{R}(R \text { will be determined with help of Chord Method })
$$

REFLECTION AND REFRACTION

D) CONVEX - CONVERGING LENS

Get a white paper and draw the picture

- measure $f_{\text {convex lens }}$.

BOĞAZİÇİ UNIVERSITY Physics Department

REFLECTION AND REFRACTION

D) CONVEX - CONVERGING LENS

Fill the empty spaces accordingly.
D) Convex - Converging Lens :

Refraction Index	$n=$
Focal Length of the lens	$f_{\mathrm{EV}}=$
Radius of the convex lens (From Chord Method)	$R=$

Focal length of the convex lens
(From Chord Method) $\quad f_{\mathrm{CV}}=$
\% difference in focal lengths =

It depends on material. You will read it from the data video. \qquad
\qquad
\square
\square

E) CONCAVE - DIVERGING LENS

Focal length and the radius of curvature of a lens is related through the following expression:

$$
\frac{1}{f}=(n-1) \frac{2}{R} \quad(\mathrm{R} \text { will be determined with help of Chord Method })
$$

REFLECTION AND REFRACTION

E) CONCAVE - DIVERGING LENS

Get a white paper and draw the picture

- measure $f_{\text {concave lens }}$.

E) CONCAVE - DIVERGING LENS

Fill the empty spaces accordingly.
E) Concave - Diverging Lens:

It depends on material. You will read it
Refraction Index $n=$ from the data video.

Focal Length of the lens $f_{\mathrm{EV}}=$
Radius of the concave lens
(From Chord Method) $\quad R=$
Focal length of the concave lens
(From Chord Method) $\quad f_{\mathrm{CV}}=$

$$
\frac{\left|f_{C V}-f_{E V}\right|}{f_{C V}} \times 100
$$

\% difference in focal lengths =

CHORD METHOD

- Draw two chords as apart from each other as possible
- Draw perpendicular lines from center of each chord with help of a protractor
- Draw a line from point of intersection of perpendicular lines to the circle

$$
\begin{aligned}
& f_{C V}=\frac{R}{2} \\
& \frac{1}{f_{C V}}=(n-1) \frac{2}{R}
\end{aligned}
$$

$\%$ difference infocal lengths $=\frac{\left|f_{C V}-f_{E V}\right|}{f_{C V}} \times 100$

BOĞAZİÇİ UNIVERSITY

Physics Department

REFLECTION AND REFRACTION

F) PRISM

We can calculate the index of refraction of a prism by measuring the angle of minimum deviation between incident and outgoing angles, and also prism angle.

$$
n=\frac{\sin \left(\frac{D_{\min }+A}{2}\right)}{\sin \left(\frac{A}{2}\right)}
$$

PRISM

BOĞAZİÇİ UNIVERSITY

Physics Department

REFLECTION AND REFRACTION

F) PRISM

Get a white paper and draw the picture
Measure minimum deviation angle $D_{\text {min }}$ and prism angle A.

F) PRISM

Fill the empty spaces accordingly.
F) Prism:

Minimum deviation between incident and refracted rays

Prism angle $A=$

Index of Refraction

True Value for the Index of Refraction
$n_{\mathrm{TV}}=$
\% difference for $\boldsymbol{n} \quad=\quad \ldots \frac{\left|n_{T V}-n_{E V}\right|}{n_{T V}} \times 100 \ldots$

BOĞAZİÇİ UNIVERSITY

Physics Department

