		_		_
Dro	a h	Do	no	10-
Pre-	Lau	ne	UU	

Lab section:

Name & Surname:

Table #:

Before the Lab complete this page YOURSELF! Hand it in in the first 5 min. of the session PERSONALLY!

You MUST justify your answers and show all steps. NO COPYCAT answers, or NO credits!

Please read the relevant presentation on PHYS LAB Website.

Q1. In your OWN WORDS, give a definition of μ_0 in ONE SENTENCE!

Q2. Explain its meaning in your OWN WORDS! Why do we need μ_0 ?

(3rd Question is on the next page!)

Q3. Show the dimensional Analysis for μ_0 . Show your formulae / derivation below explicitly or no credits!

Q4. What are the **relative** current directions in the wires in this experiment and how can you conclude this? How would you change the procedure or modify the setup if the relative directions were **otherway around**? (Hint: Have a look at the paralel plate experiment! Do not offer to revert the current directions!)

Lab Report

Lab section:

Name & Surname:

Table #:

Complete this report YOURSELF except DATA taking parts! Use a pencil for plots only and a pen for the rest! Show your work clearly, NO COPYCAT analysis allowed, or NO credits!

OBJECTIVE: To measure the force between parallel, current carrying conductors and to analyze the dependence of this force on the constants of the system.

THEORY: Force between the current carrying wires is given as:

$$F = \frac{\mu_o}{2\pi} \frac{L}{d} I_1 I_2$$

and if the same current is passing through the wires as:

$$F = \frac{\mu_o}{2\pi} \frac{L}{d} I^2$$

where *L* is the length of the wires and *d* is the separation between the parallel wires. By measuring the force between current carrying parallel wires as a function of the current passing through them, we can determine the permeability of air. When the force values are plotted as a function of the squares of the corresponding current values, the straight line that fits the data best will have a slope that includes the permeability constant. From the slope of the straight line we can calculate the permeability constant as:

$$\mu_o = \frac{2\pi(slope)d}{L}$$

APPARATUS: Parallelwires apparatus, laser pointer with a ruler, meter stick, 9-A AC-ammeter, AC power supply with a transformer.

PROCEDURE:

- 1. Adjust the counterpoise so that the separation between bars, d_0 , is about 3 mm. Record the scale reading at equilibrium (R_0) .
- 2. Then the upper bar is depressed until it is in contact with the lower bar, and a new scale reading is noted (R_c). The separation d_o is calculated.
- 3. To make measurements, add a certain mass to the weight pan, increase the current until the scale reading indicates the initial reading, R_0 .
- 4. Read the ammeter. Plot $F_{\rm m}$ versus I^2 and determine μ_0 .

Theoretical Value of permeability of air:

 $\mu_{\text{oTV}} = 4\pi \times 10^{-7} \text{ N /A}^2$ All figures significant!

DATA:

Description	Syml	ool	Value & Unit	
Length of the				
lavar area	~	_		
lever arm	а	=		
Distance from the	scale			
with the mirror				
to the ruler	b	=		

Description	Symbol	Value & Unit
Diameter of the wire	e 2 <i>r</i> =	
Length of the wire	L =	
Reading when		
the wires are open	R _O =	
Reading when		
the wires are closed	R _C =	
Difference in reading	gs D =	
Separation		
between the wires (d _o =	
Separation between		
the wire centers (d =	

Mass	Current	$F_{\rm m} = m.g = k$	Square of the Current
m ()	1 () ()	I ² ()

								###								
		++++														
					Ш	Ш				Ш		Ш				Ш

A) From the graph, choose two SLOPE POINTS other than data points,

RESULTS:

Description	Ca	lculation (show each step)	Result
SLOPE	=		
$(\mu_{ m o})_{ m EV}$	=		
% Error for $\mu_{ m o}$	=		

Consult to the resources for this experiment from PHYS LAB Website:

PHYL201 Intro

Presentation #6