

THE SIMPLE PENDULUM

PHYL101

THE SIMPLE PENDULUM

A pendulum is a weight suspended from a pivot so that it can swing freely. The word "pendulum" is new Latin, derived from the Latin "pendulus", which means "hanging".
The simple part has some additional constraints that makes the pendulum easier to analyze.

- Around 1602, Galileo Galilei studied pendulum properties after watching a swinging chandelier in the cathedral of Pisa's domed ceiling.
- Using his pulse as a time measurement, he observed the swinging motion has a fixed period.
- Thus pendulums became timekeeping devices.

THE SIMPLE PENDULUM

54 years later, first pendulum clock was invented in 1656 by Dutch scientist Christiaan Huygens. A more modern version from 1904 is given below.

THE SIMPLE PENDULUM - Aim

- What to measure: Length L of the pendulum, time t for the pendulum to complete 10 periods.
- What to calculate : Period T
- Experimental findings:

Gravitational acceleration g

Physics Department

THE SIMPLE PENDULUM

THEORY

As the pendulum oscillates, the pendulum experiences a restoring force with a magnitude of $m g \sin (\theta)$. Writing Newton's second law when the pendulum is at θ;

$$
\begin{gathered}
F=\boldsymbol{m a}(\theta)=-m g \sin (\theta) \\
a(\theta)=-g \sin (\theta)
\end{gathered}
$$

THE SIMPLE PENDULUM - Theory

Recall the arc length s of a circle with radius r with central angle θ.

$$
s=L \theta
$$

We take second time derivative of this equation. Since L is constant we get;

$$
a=L \alpha
$$

Here, α is the angular acceleration. Let us switch a with $L \alpha$ in the previous equation.

We get;

$$
\alpha(\theta)=-\frac{g \sin (\theta)}{L}
$$

For small angles, $\sin (\theta) \cong \theta$ is a good approximation. We can see a geometric justification below;

$$
\sin \theta=\frac{O}{H} \approx \frac{s}{A}=\frac{A \theta}{A}=\theta
$$

THE SIMPLE PENDULUM - Theory
We had;

$$
\alpha(\theta)=-\frac{g \sin (\theta)}{L}
$$

Using $\sin (\theta) \cong \theta$ and writing α as second time derivative of θ;

$$
\frac{d^{2} \theta}{d t^{2}}+\frac{g}{L} \theta \cong 0
$$

This is a second order differential equation and its solution for θ is;

$$
\theta(t)=\theta_{0} \cos \left(\sqrt{\frac{g}{L}} t\right)
$$

Since cosine function is periodic with 2π, inside of the cosine should be equal to 1 period T of the pendulum. Thus;

$$
\sqrt{\frac{g}{L}} T=2 \pi \quad \Rightarrow \quad T=2 \pi \sqrt{\frac{L}{g}}
$$

If we leave g alone in the previous equation, we will get;

$$
g=4 \pi^{2} \frac{L}{T^{2}}
$$

Note that the precision and accuracy of the gravitational constant g is determined by the precision and accuracy of length L and period T. It does not depend on mass m.

After finding the experimental value of gravitational acceleration g, we will compare it to the true value;

$$
g_{t v}=9.81 \mathrm{~m} / \mathrm{s}^{2}=981 \mathrm{~cm} / \mathrm{s}^{2}
$$

Simulation of
1 period

THE SIMPLE PENDULUM

APPARATUS

It can move up and down
Makes the Length shorter or longer
Fixed point (support)
Conditions for Simple Pendulum

- Point mass at the end
- Long string is massless and does not stretch
- Small oscillations $\boldsymbol{\sim 1 0}{ }^{\boldsymbol{o}}$

This is where we read the Vernier.

It is used to shorten the length of the pendulum.

Length of the pendulum L

ROTATIONAL INERTIA

EXPERIMENT

THE SIMPLE PENDULUM - Experiment

On page 39 of your lab book, you will write down the true value of gravitational acceleration $g_{t v}=9.81 \mathrm{~m} / \mathrm{s}^{2}$ and number of oscillations you are to record which will be 10.
Description Symbol Value \& Unit
Acceleration due to gravity $g_{\mathrm{TV}}=$Number ofOscillations $N=$

THE SIMPLE PENDULUM - Experiment

For the first measurement L_{1}, you will be shown the initial length of the pendulum in the DataVideos as given in these samples. Do not record these!

For L_{1} measurement, Vernier is set to zero.

$$
L_{1}=152.2 \mathrm{~cm}-3.6 \mathrm{~cm}=148.6 \mathrm{~cm}
$$

Physics Department

THE SIMPLE PENDULUM - Experiment

Then, you will record your L_{1} to the first row of the first column.

Length of Pendulum $\boldsymbol{L}($ unit $)$	10 periods $\boldsymbol{t}($ unit $)$	One Period \boldsymbol{T} (unit $)$
\#of Sienificant Figures: : s.f.	\#of Significant Figures: s.f.	\#of Significunt Figures: s.f.
$L_{\mathbf{1}}$		

THE SIMPLE PENDULUM - Experiment

Right after the length measurement is done in the Lab, determine the time for 10 oscillations of the pendulum with that length.

Using the stopwatch of your cellphones, time t for 10
Period measurement
Video2

THE SIMPLE PENDULUM - Experiment

Then, you will record your $\boldsymbol{t}_{\boldsymbol{1}}$ to the first row of the second column.

Length of Pendulum L (unit)	10 periods (unit $)$	One Period T(unit)
\#of Significant Figures: s.f.	\#of Significant Figures: s.f.	\#of Significant Figures: s.f.
L_{1}	$\boldsymbol{t}_{\mathbf{1}}$	

THE SIMPLE PENDULUM - Experiment

THE SIMPLE PENDULUM - Experiment

For the L measurements after L_{1}, here you have a clip of increasing
Vernier reading. Here, $\Delta x_{i}=3.0 \mathrm{~cm}, x_{f}=6.0 \mathrm{~cm}$.

THE SIMPLE PENDULUM - Experiment

At the end of the increment, you will see a close-up shot of the final Vernier reading just like the one given below. So, length of the pendulum for this measurement is $L=L_{1}-6.0 \mathrm{~cm}$. Just after, you will measure the oscillations with this L.

THE SIMPLE PENDULUM - Experiment

As you move on to different pendulum lengths, you will change the Vernier reading for that measurement and from that you will calculate L from it. Then you will measure t.

Length of Pendulum L (unit)	10 periods (unit $)$	One Period T(unit $)$
\#of Significant Figures: s.f.	\#of Significant Figures: s.f.	\#of Significant Figures: s.f.
L_{1}	\boldsymbol{t}_{1}	
$L_{2}=L_{1}-\Delta x_{1}$	t_{2}	
$L_{3}=L_{1}-\Delta x_{2}$	t_{3}	
$L_{4}=L_{1}-\Delta x_{3}$	t_{4}	
$L_{5}=L_{1}-\Delta x_{4}$	t_{5}	

THE SIMPLE PENDULUM - Experiment

After measuring first two columns, finish the table by filling the third column. Please do not forget to fill units and significant figures.

Length of Pendulum L (unit)	10 periods (unit $)$	One Period T(unit $)$
\#of Significant Figures : s.f.	\#of Significant Figures: s.f.	\#of Significant Figures: s.f.
L_{1}	t_{1}	$T_{1}=t_{1} / N$
$L_{2}=L_{1}-\Delta x_{1}$	t_{2}	$T_{2}=t_{2} / N$
$L_{3}=L_{1}-\Delta x_{2}$	t_{3}	$T_{3}=t_{3} / N$
$L_{4}=L_{1}-\Delta x_{3}$	t_{4}	$T_{4}=t_{4} / N$
$L_{5}=L_{1}-\Delta x_{4}$	t_{5}	$T_{5}=t_{5} / N$

THE SIMPLE PENDULUM - Experiment

On page 41 of your lab books, you are going to calculate 5 gravitational acceleration g_{1}, g_{2}, ..values from the data you have recorded to the previous table using the formula we have derived;

$$
g_{i}=4 \pi^{2} \frac{L_{i}}{T_{i}^{2}}
$$

g_{1}	$=$
g_{2}	$=$

THE SIMPLE PENDULUM - Experiment

For the last part will be to take average of the g_{1}, g_{2}, \ldots and record it as $g_{\text {average. }}$. Then, you will use the formula given below to calculate the percent deviation. Finally, show the dimensional analysis of g.

$$
\% \text { Deviation for } g=\frac{\left|g_{T V}-g_{\text {average }}\right|}{g_{T V}} \times 100
$$

$g_{\text {average }}=$
\% Deviation for g :

Show the dimensional analysis for g :

