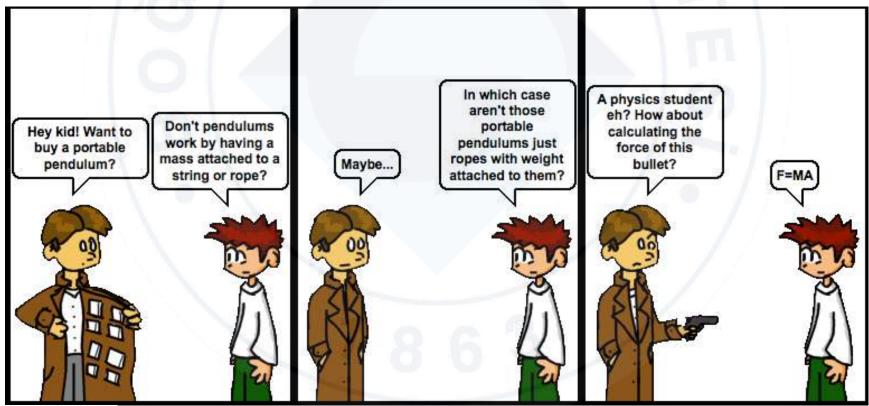
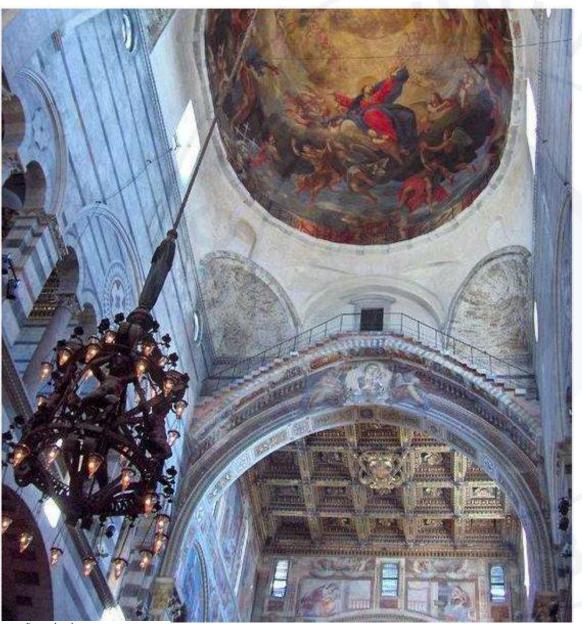
Boğaziçi University Introductory Phys Labs



PHYL101


A pendulum is a weight suspended from a pivot so that it can swing freely. The word "pendulum" is new Latin, derived from the Latin "pendulus", which means "hanging".

The <u>simple</u> part has some additional constraints that makes the pendulum easier to analyze.

BOĞAZİÇİ UNIVERSITY Physics Department

- Around 1602, Galileo Galilei studied pendulum properties after watching a swinging chandelier in the cathedral of Pisa's domed ceiling.
- Using his pulse as a time measurement, he observed the swinging motion has a fixed period.
- Thus pendulums became timekeeping devices.

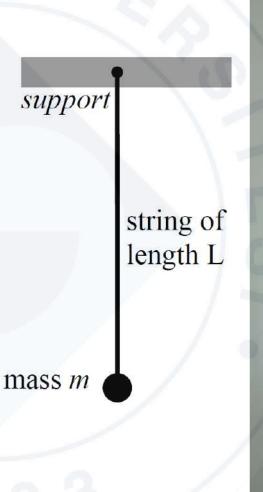
BOĞAZİÇİ UNIVERSITY Physics Department

Phys Labs

54 years later, first pendulum clock was invented in 1656 by Dutch scientist Christiaan Huygens. A more modern version from 1904 is given below.

BOĞAZİÇİ UNIVERSITY

Physics Department

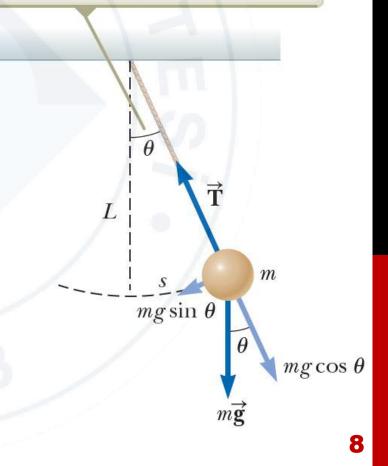

THE SIMPLE PENDULUM – Aim

- What to measure: Length *L* of the pendulum, time *t* for the pendulum to complete 10 periods.
- What to calculate : Period T
- Experimental findings :

Gravitational acceleration g

THEORY

As the pendulum oscillates, the pendulum experiences a restoring force with a magnitude of $mgsin(\theta)$. Writing Newton's second law when the pendulum is at θ ;


 $F = ma(\theta) = -mgsin(\theta)$

 $\boldsymbol{a}(\boldsymbol{\theta}) = -\boldsymbol{gsin}(\boldsymbol{\theta})$

BOĞAZİÇİ UNIVERSITY

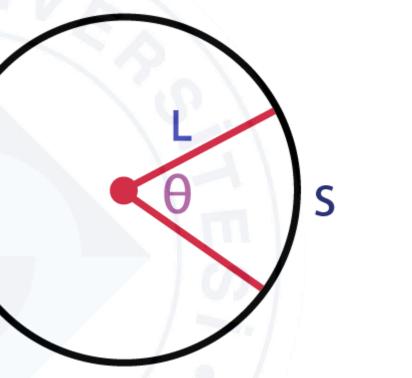
Physics Department

When θ is small, a simple pendulum's motion can be modeled as simple harmonic motion about the equilibrium position $\theta = 0$.

9

THE SIMPLE PENDULUM – Theory

Recall the arc length s of a circle with radius r with central angle θ .

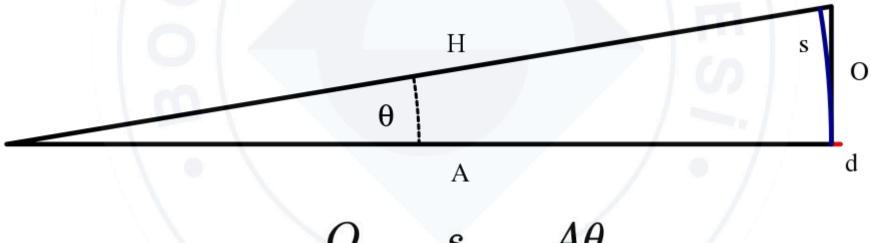

 $s = L\theta$

We take second time derivative of this equation. Since *L* is constant we get; $a = L\alpha$

BOĞAZİÇİ UNIVERSITY

Physics Department

Here, α is the angular acceleration. Let us switch α with $L\alpha$ in the previous equation.



We get; $\alpha(\theta) = -\frac{gsin(\theta)}{L}$

For small angles, $sin(\theta) \cong \theta$ is a good approximation. We can see a geometric justification below;

$$\sin heta = rac{O}{H} pprox rac{s}{A} = rac{A heta}{A} = heta$$

Physics Department

 $gsin(\theta)$ We had; $\alpha(\theta)$

Using $sin(\theta) \cong \theta$ and writing α as second time derivative of θ ;

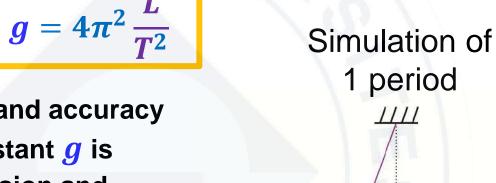
$$\frac{d^2\theta}{dt^2} + \frac{g}{L}\theta \cong 0$$

This is a second order differential equation and its solution for θ is;

 $\theta(t) = \theta_0 cos(\sqrt{\frac{g}{I}}t)$

Since cosine function is periodic with 2π , inside of the cosine should be equal to 1 period T of the pendulum. Thus;

$$\sqrt{\frac{g}{L}}T = 2\pi \qquad \implies T = 2\pi \sqrt{\frac{L}{g}}$$
BOĞAZİÇİ UNIVERSITY
Physics Department


If we leave g alone in the previous equation, we will get;

Note that the precision and accuracy of the gravitational constant g is determined by the precision and accuracy of length L and period T. It does not depend on mass *m*.

After finding the experimental value of gravitational acceleration g, we will compare it to the true value;

 $g_{tv} = 9.81m/s^2 = 981cm/s^2$

BOĞAZİÇİ UNIVERSITY **Physics Department**

1 period

Video0

APPARATUS

THE SIMPLE PENDULUM – Apparatus

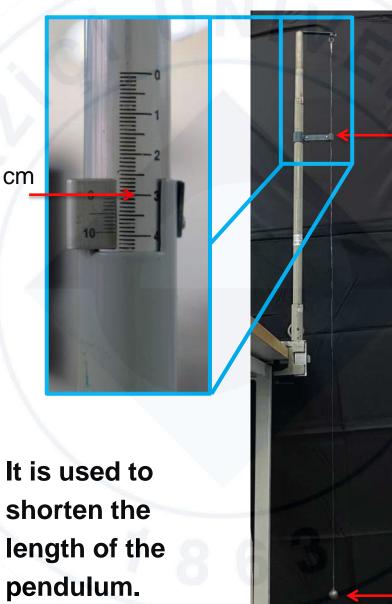
It can move up and down Makes the Length shorter or longer

Fixed point (support)

Conditions for Simple Pendulum

Point mass at the end

Length of the pendulum *L*


- Long string is massless and does not stretch
- Small oscillations ~10°

THE SIMPLE PENDULUM – Apparatus

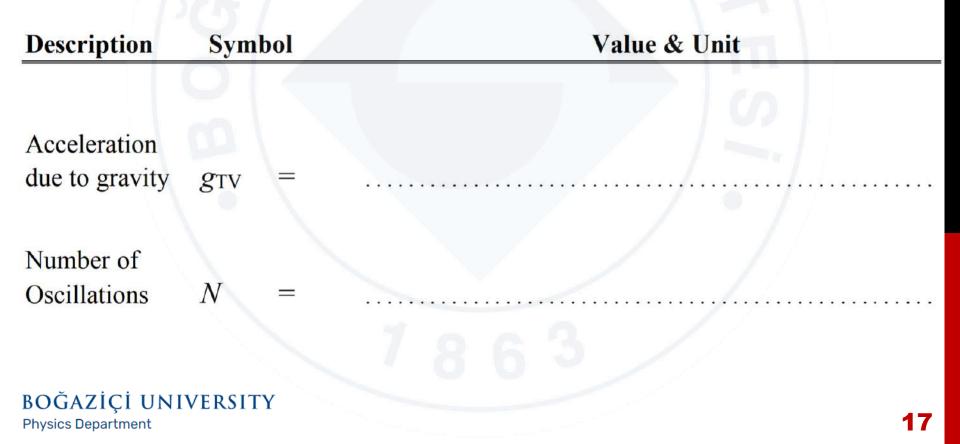
Physics Department

Fixed point (support)

Length of the pendulum L

Center of Metal Ball

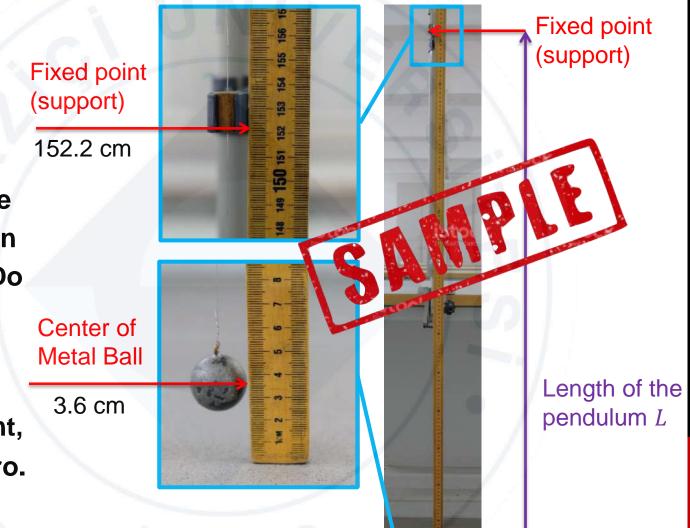
15


ROTATIONAL INERTIA

EXPERIMENT

On page 39 of your lab book, you will write down the true value of gravitational acceleration $g_{tv} = 9.81 m/s^2$ and number of oscillations you are to record which will be 10.

Center of


Metal Ball **18**

For the first measurement L_1 , you will be shown the initial length of the pendulum in the DataVideos as given in these samples. Do not record these!

For L_1 measurement, Vernier is set to zero.

 $L_1 = 152.2cm - 3.6cm = 148.6cm$

BOĞAZİÇİ UNIVERSITY Physics Department

Then, you will record your L_1 to the first row of the first column.

10 periods t (unit)	One Period T (unit)
# of Significant Figures : S.f.	# of Significant Figures : S.f.
	5
(863)	
	t (unit)

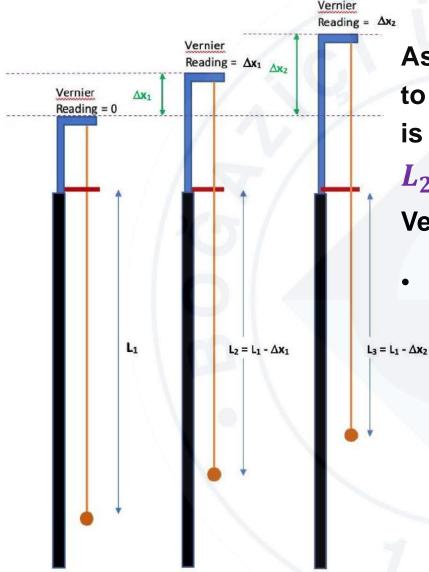
Physics Department

Right after the length measurement is done in the Lab, determine the time for 10 oscillations of the pendulum with that length.

Using the stopwatch of your cellphones, time *t* for 10 oscillations as shown on the left.

Physics Department

BOĞAZİÇİ UNIVERSITY



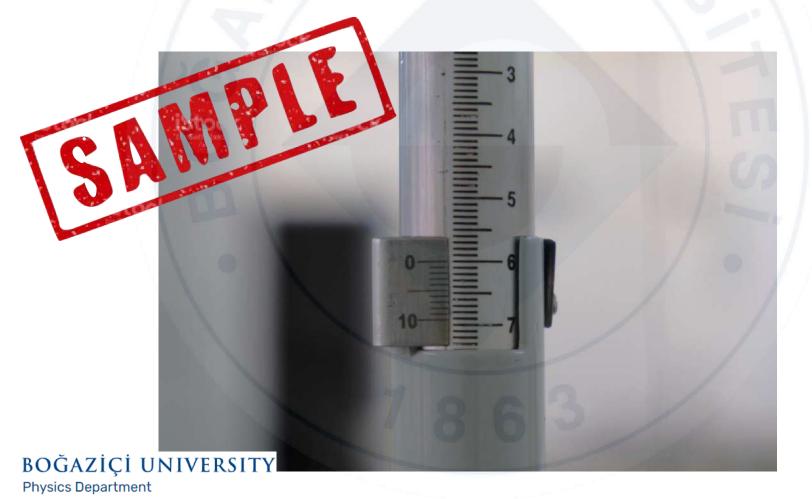
Then, you will record your t_1 to the first row of the second column.

Length of Pendulum L (unit)	10 periods t (unit)	One Period T (unit)
# of Significant Figures : S.f.	# of Significant Figures : S.f.	# of Significant Figures : S.f
L_1	t_1	5
	1863	

Physics Department

As the blue part that the string is attached to moves upward, the length of the string is shortened by the same amount. For L_2, L_3, L_4 and L_5 , you will only need the Vernier reading Δx .

- The following four L measurements will be derived from Vernier reading Δx ;
 - Vernier Reading: Δx_1 , $L_2 = L_1 \Delta x_1$
 - Vernier Reading: Δx_2 , $L_3 = L_1 \Delta x_2$
 - and so on..



For the L measurements after L_1 , here you have a clip of increasing Vernier reading. Here, $\Delta x_i = 3.0 cm$, $x_f = 6.0 cm$.

At the end of the increment, you will see a close-up shot of the final Vernier reading just like the one given below. So, length of the pendulum for this measurement is $L = L_1 - 6.0$ cm. Just after, you will measure the oscillations with this *L*.

24

As you move on to different pendulum lengths, you will change the Vernier reading for that measurement and from that you will calculate L from it. Then you will measure t.

10 periods	One Period
	T (unit)
<i># of Significant Figures</i> : S.f.	# of Significant Figures : S.f.
<i>t</i> ₁	0
<i>t</i> ₂	
<i>t</i> ₃	
t ₄	
	$t(unit)$ # of Significant Figures : S.f. t_1 t_2 t_3

Physics Department

After measuring first two columns, finish the table by filling the third column. Please do not forget to fill units and significant figures.

Length of Pendulum	10 periods	One Period
L (unit)	t (unit)	T (unit)
# of Significant Figures : S.f.	<i># of Significant Figures</i> : S.f.	# of Significant Figures : S.f.
L	<i>t</i> ₁	$T_1 = t_1/N$
$L_2 = L_1 - \Delta x_1$	<i>t</i> ₂	$T_2 = t_2/N$
$L_3 = L_1 - \Delta x_2$	<i>t</i> ₃	$T_3 = t_3/N$
$L_4 = L_1 - \Delta x_3$	t ₄	$T_4 = t_4/N$
$L_5 = L_1 - \Delta x_4$	t ₅	$T_5 = t_5/N$
AZİÇİ UNIVERSITY		

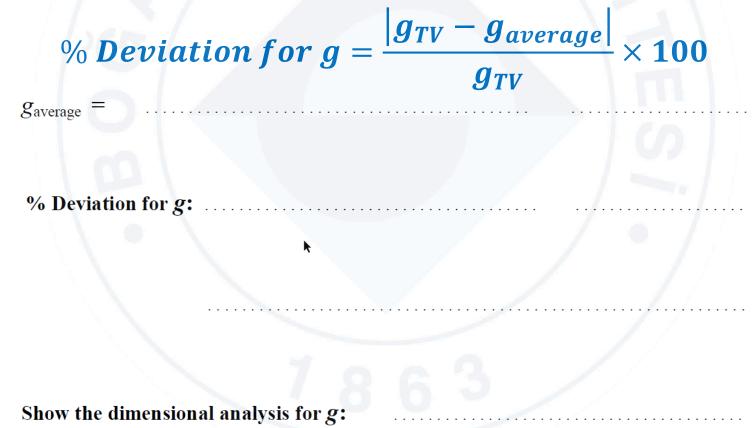
Physics Department

On page 41 of your lab books, you are going to calculate 5 gravitational acceleration $g_1, g_2, ...$ values from the data you have recorded to the previous table using the formula we have derived;

$$g_i = 4\pi^2 \frac{L_i}{T_i^2}$$

Calculations (show each step)

Result & Unit


Symbol

 g_1

 g_2

For the last part will be to take average of the $g_1, g_2, ...$ and record it as $g_{average}$. Then, you will use the formula given below to calculate the percent deviation. Finally, show the dimensional analysis of g.

